Leaps and Bounds Toward Math Understanding Secondary Cycle 1 Curriculum Correlation

Curriculum Expectations Secondary Cycle 1	INTERVENTION Resources and Expectations from Previous Cycle	
Progression of Learning Essential Knowledge Expectations Secondary 1 (Grade 7) and Secondary 2 (Grade 8)	Correlation Leaps and Bounds and knowledge expectations	Progression of Learning Essential Knowledge Expectations Elementary Cycle 3 (Elementary 5 and Elementary 6)
Arithmetic: Understanding Real Numbers		
	Leaps and Bounds 7/8: Representing Whole Numbers Pathway 1: Using Decimals for Large Whole Numbers Pathway 2: Representing Millions and Billions Pathway 3: Representing Six-Digit Numbers	Natural Numbers less than 1000 000: - Reads and writes any natural number - Represents natural numbers in different ways - Composes and decomposes a natural number in a variety of ways and identifies equivalent expressions - Approximates a natural number - Compares natural numbers or arranges natural numbers in increasing or decreasing order - Classifies natural numbers in various ways, based on their properties (e.g. even numbers, composite numbers)
Fractions - Identifies the different meaning of fractions: part of a whole, division, ratio, operator, measurement	Leaps and Bounds 7/8: Comparing Fractions Pathway 1: Fractions and Mixed Numbers Pathway 2: Proper Fractions Pathway 3: Equivalent Fractions Leaps and Bounds 5/6: Representing Fractions Pathway 1: Improper Fractions: Parts of Sets Pathway 2: Improper fractions: Parts of Wholes Pathway 3: Proper fractions: Parts of Sets Pathway 4: Proper fractions: Parts of Wholes Leaps and Bounds 5/6: Comparing Fractions Pathway 1: Fractions More and Less Than 1 Pathway 2: Equivalent Fractions Pathway 3: Comparing Same Numerator Pathway 4: Comparing Same Denominator Pathway 5: Comparing Fractions to $1 / 2$ and 1	Fractions - Represents a fraction in a variety of ways (using objects or drawings) - Verifies whether two fractions are equivalent - Orders fractions with the same denominator or where one denominator is a multiple of the other(s) or with the same numerator - Locates fractions on a number line

Leapsmim Bomds

 rowaip Math Ondersstanding
Leaps and Bounds Toward Math Understanding Secondary Cycle 1 Curriculum Correlation

(

	Leaps and Bounds 7/8: Whole Number Operations Pathway 1: Order of Operations Pathway 2: Dividing Whole Numbers Pathway 3: Multiplying Whole Numbers Leaps and Bounds 5/6: Adding and Subtracting Pathway 1: Different Numbers of Digits Pathway 2: Same Number of Digits Pathway 3: Using Mental Math to Subtract Pathway 4: Using Mental Math to Add	Natural Numbers less than 1000000 - Determines the operation(s) to perform in a given situation - Uses objects, diagrams or equations to represent a situation and, conversely, describes a situation represented by objects, diagrams or equations (use of different meanings of the four operations) - Establishes equality relations between numerical expressions (e.g. $3+2=6-1$) - Determines numerical equivalencies using relationships between operations (the four operations), the commutative property and the associative property of addition and multiplication, the distributive property of multiplication over addition and subtraction - Translates a situation using a sequence of operations in accordance with the order of operations
Fractions: - Uses an operation to represent a situation (use of different meanings of operations)	Leaps and Bounds 7/8: Fraction Operations Pathway 1: Repeated Addition of Fractions Pathway 2: Adding and Subtracting Mixed Numbers Pathway 3: Subtracting Fractions Pathway 4: Adding Fractions	Fractions: - Uses objects, diagrams or equations to represent a situation and conversely, describes a situation represented by objects, diagrams or equations (uses the different meanings of addition, subtraction and multiplication by a natural number)
Decimals:	Leaps and Bounds 7/8: Decimal Operations Pathway 1: Dividing Whole Numbers by Decimals Pathway 2: Diving Decimals by Whole Numbers Pathway 3: Multiplying with Decimals Pathway 4: Adding and Subtracting with Decimals Leaps and Bounds 7/8: Relating Situations to Operations Pathway 1: Recognizing Division Situations Pathway 2: Recognizing Multiplication Situations Pathway 3: Recognizing Subtraction Situations	Decimals: - Uses objects, diagrams or equations to represent a situation and, conversely, describes a situation represented by objects, diagrams or equations (use of different meanings of the four operations) - Determines numerical equivalencies using relationships between operations (inverse operations), the commutative and the associative properties of addition and multiplication, the distributive property of multiplication over addition and subtraction - Translates a situation into a series of operations in accordance

LeapsamBounds

 rowaip Math Onderstanding
Leaps and Bounds Toward Math Understanding Secondary Cycle 1 Curriculum Correlation

Arithmetic: Meaning of Operations Involving Numbers Natural Numbers less than 1000 000:

Leaps and Bounds 5/6: Dividing Whole Numbers Pathway 1: Dividing Three-Digit Numbers Pathway 2: Dividing Two-Digit Numbers Pathway 3: Division Fact Strategies

Leaps and Bounds 5/6: Multiplying Whole Number Pathway 1: Multiplying Two-Digit Numbers Pathway 2: Multiplying by One-Digit Number Pathway 3: Multiplication Fact Strategies

Leaps and Bounds 5/6: Adding and Subtracting Pathway 1: Different Number of Digit Pathway 2: Same Number of Digits Pathway 3: Using Mental Math to Subtract Pathway 4: Using Mental Math to Add

Natural Numbers less than 1000000

- approximates the result of an operation
- mentally computes operations (using personal processes)
- determines in writing
o the sum of two natural numbers of up to 4 digits
o the difference between two natural numbers of up to 4 digits whose result is greater than 0
0 the product of a three-digit number by a two-digit number
o the quotient of a four-digit number and a two-digit number and expresses the remainder of a division as a decimal that does not go beyond the second decimal place
0 the result of a sequence of operations in accordance with the order of operations

Leapsmim Bomds

 rownid MathOnderstanditg
Leaps and Bounds Toward Math Understanding Secondary Cycle 1 Curriculum Correlation

Leapsam Bounds

Arithmetic: Understanding and Analyzing Proportional Situations	
Calculates $\bullet \quad$ a certain percentage of a number $\bullet \quad$ the value corresponding to 100 per cent	Leaps and Bounds 7/8: Rates, Percents and Ratios Pathway 1: Using Rates
Recognizes ratios and rates	Pathway 2: Using Percents
Pathway $3:$ Using Ratios	

Leapsambounds rowaid MathOnderstanditg

Leaps and Bounds Toward Math Understanding Secondary Cycle 1 Curriculum Correlation

recognizes a proportional situation using the context, a table of values or a
graph
Represents or interprets a proportional situation using a graph, a table of
valus or a proportes quantitatively (equivalent rates and ratios, unit
lolves proportal situations (direct or inverse variation) by using
different strategies (e.g. uni-rate method, factor of change,
proportonality ratio, additive procedures, constant product linverse
variation])

Algebra: Understanding and manipulating algebraic expressions

A. Algebraic Expressions

Describes the role of the components of algebraic expressions

- unknown
- variable, constant
- coefficient, degree, term constant term, like terms

Constructs an algebraic expression using a register (type) of representation
Interprets an algebraic expression in light of the context

Recognizes or constructs equivalent algebraic expressions Recognizes or constructs equalities and equations

B. Manipulating Algebraic Expressions

Calculates the numeric value of an algebraic expression
and Bounds 7/8: Algebr

Describes the role of the components of algebraic expressions

- missing term

Performs the following operations on algebraic expressions, with or without objects or diagrams:

- addition/subtraction

LeapsamBounds

 towain Math Onderstanding- multiplication/division by a constant
- multiplication by first-degree monomials

Factors out the common factor in numerical expressions (distributive
property of multiplication over addition or subtraction)
C. Analyzing Situations Using Equations or Inequalities Recognizes whether a situation can be translated by an equation Recognizes or constructs relations or formulas

Manipulates relations or formulas (e.g. isolating an element)
Represents a situation using a first-degree equation with one unknown Represents an equation using another register (type) of representation, if necessary

Transforms arithmetic equalities and equations to maintain equivalence (properties and rules of transforming equalities) and justifies the steps followed, if necessary
Uses different methods to solve first-degree equations with one unknown of the form $a x+b=c x+d$: trial and error, drawings, arithmetic methods (inverse or equivalent operations), algebraic methods (balancing equations or hidden terms)
Validates a solution, with or without technological tools, by substitution Interprets solutions or makes decisions, if necessary, depending on the context
\qquad

Leaps and Bounds 7/8: Algebra Pathway 1: Solving Problems Using Equations Pathway 2: Solving Simple Equations Pathway 3: Using Variables
Leaps and Bounds 7/8: Algebra
Pathway 1: Solving Problems Using Equations Pathway 2: Solving Simple Equations
Algebra: Understanding Dependency Relationships
Analyzes situations using different registers (types) of representation
Leaps and Bounds 7/8: Patterns
Pathway 1: Linear Relations
Pathway 2: Representing Patterns
Pathway 3: Exploring Simple Patterns

Probability		
A. Processing Data from Random Experiments		
Conducts or simulates random experiments involving one or more steps (with or without replacement, with or without order)	Leaps and Bounds 7/8: Probability* Pathway 1: Probability: Independent Events Pathway 2: Theoretical Probability Pathway 3: Experimental Probability	- Simulates random experiments with or without the use of technology - Experiments with activities involving chance, using various objects (e.g. spinners, rectangular prisms, glasses, marbles, thumb tacks, 6-, 8-, 12 -sided dice)
Enumerates possible outcomes of a random experiment using a networks, tables, diagrams, Venn diagrams	Leaps and Bounds 5/6: Probability* Pathway 1: Probability: Using Numbers Pathway 2: Probability: Using Words *Does not include vocabulary such as: simple,	- In activities involving chance: o recognizes variability in possible outcomes (uncertainty) o recognizes equiprobability (e.g. quantity of objects, symmetry of an object [cube])
Recognizes certain, probable, impossible, simple, complimentary, compatible, incompatible, dependant and independent events	complimentary, compatible, incompatible and dependant	experiment (e.g. rolling dice, tossing a coin, drawing lots) - Uses tables or diagrams to collect and display the outcomes of an experiment - Compares the outcomes of a random experiment with known theoretical probabilities - Distinguishes between a prediction and an outcome - Enumerates possible outcomes of a random experiment using a table or a tree diagram - Uses fractions, decimals or percentages to quantify a probability - Recognizes that probability is always between 0 and 1 - Predicts qualitatively an outcome or several events using a probability line, among other things:
Defines the sample space of a random experiment		o certain, possible and impossible outcomes o more likely, just as likely, less likely events

Leapsam Bounds

 wowaip Math Ondersstanding
Leaps and Bounds Toward Math Understanding Secondary Cycle 1 Curriculum Correlation

B. Analyzing Probability Situations	Leaps and Bounds 7/8: Probability Distinguishes between theoretical and experimental probability Pathway 1: Probability: Independent Events Pathway 2: Theoretical Probability Pathway 3: Experimental Probability Leaps and Bounds 5/6: Probability Pathway 1: Probability: Using Numbers Pathway 2: Probability Using Words	Represents an event using different registers (types of representation) Compares qualitatively the theoretical or experimental probability of an event

Statistics

A. One-variable Distributions

Chooses a sampling method: simple random, systematic Chooses a representative sample

Recognizes possible sources of bias
Distinguishes different types of statistical variables: qualitative, discrete or continuous quantitative
Organizes and presents data using a table presenting variables or frequencies, or using a circular graph

Compares one-variable distributions

Describes the concept of arithmetic mean (levelling or balancing point)
Calculates and interprets arithmetic mean using positive or negative numbers written in decimal or fractional notation

Niminiminilinilily
Leaps and Bounds 7/8: Displaying Data
Pathway 1: Using Circle Graphs and Line Graphs Pathway 2: Bias and Sampling

- Formulates questions for a survey (based on age-appropriate topics, students' language level, etc.)
- Collects, describes and organizes data (classifies or categorizes) using tables
- Interprets data using a table, a bar graph, a pictograph, a broken-line graph and a circle graph
- Organizes and presents data using a table, a bar graph, a pictograph and a broken line graph
- Understands and calculates the arithmetic mean

Leapsambounds Towaid MathOnderstanditg

Determines and interprets

- measures of dispersion: range
- measures of position: minimum and maximum

Chooses the appropriate statistical measures for a given situation

Geometry: Spatial Sense and Analyzing Situations involving Geometric Figures

A. Plane Figures

Recognizes and names regular convex polygons
Decomposes plane figures into circles (sectors), triangles or quadrilateral

- Describes and classifies triangles

Describes circles and sectors
Recognizes and draws main segments and lines

- diagonal, altitude, median, perpendicular bisector, bisector, apothem, radius, diameter, chord
Identifies the properties of plane figures using geometric transformations and constructions
Justifies statements using definitions or properties of plane figures

B. Solids

Determines the possible nets of a solid	Leaps and Bounds 5/6: 3-D Shapes Pathway 1: Modelling with nets		Describes solids o vertex, edge, base, face
Names the solid corresponding to a net Describes solids - altitude, apothem, lateral face			Matches the net of a convex polyhedron to the corresponding convex polyhedron Tests Euler's relation on convex polyhedron

C. Geometric Constructions and Transformations in the Euclidian Plane		
Identifies properties and invariants resulting from geometric constructions and transformations		
Identifies congruence (translation, rotation and reflection) between two figures	Leaps and Bounds 7/8: 2-D Shapes Pathway 2: Congruent Shapes Leaps and Bounds 7/8: Transformations Pathway 1: Using Transformations in Design Pathway 2: Performing Dilatations Pathway 3: Combining Transformations Pathway 4: Performing Single Translations Leaps and Bounds 5/6: Transformations Pathway 1: Single Rotations Pathway 2: Multiple Reflections Pathway 3: Multiple Translations Pathway 4: Single Reflections and Translations	- Observes and produces frieze patterns and tessellations using reflections and translations
Constructs the image of a figure under a translation, rotation and reflection		
Recognizes a dilatation with a positive scale factor		
Constructs the image of a figure under a dilatation with a positive scale factor		
D. Congruent, Similar or Equivalent Figures		
Recognizes congruent or similar figures	Leaps and Bounds 7/8: 2-D Shapes Pathway 1: Similar Shapes Pathway 2: Congruent Shapes	- Identifies congruent figures in Frieze patterns and tessellations
Recognizes the geometric transformation(s) linking a figure to its image		
Determines the properties and invariants of congruent or similar figures		
Justifies statements using definitions or properties of congruent, similar or equivalent figures, depending on the cycle and year		

LeapsamBounds rownid Maxtunderstanding

Leaps and Bounds Toward Math Understanding Secondary Cycle 1 Curriculum Correlation

les

Leapsam Bounds

 rownid MathOnderstanditg
Leaps and Bounds Toward Math Understanding Secondary Cycle 1 Curriculum Correlation

Analytic Geometry

A. Locating

Locates objects / numbers on an axis, based on the types of numbers studied (positive and negative numbers in fractional or decimal notation) Locates points in a Cartesian plane (x-, y-coordinates of a point), based on the types of numbers studied (positive and negative numbers in fractional or decimal notation)

Leaps and Bounds 7/8: Location* Pathway 1: Plotting Points in 4 Quadrants
Pathway 2: Plotting Points on a Grid

* does not include numbers in fractional or decimal notation

Locates objects / numbers on an axis, based on the types of numbers studied (positive and negative natural numbers)

Locates points in a Cartesian plane (x-, y-coordinates of a point), based on the types of numbers studied (positive and negative natural numbers)

