Stacking Shapes to Make Prisms

Goal Describe and name prisms.

1. Name the prism.
a)

\qquad
c)

rectangle-based
prism
d)

triangle-based
prism
b)

triangle-based
prism

At-Home Help

A prism is a 3-D shape with congruent ends called bases. The other faces are 4-sided.

2. Name the prism you could make with each base. Describe each prism by telling how many faces, edges, and vertices it has.
a)
 rectangle-based
prism with 12 edges, 6 faces,
and 8 vertices
b)
 pentagon-based prism with 15 edges, 7 faces,
and 10 vertices
3. Circle the letter of the shape that is a prism.

Tell how you know that you have chosen the correct shape.
A.

B.

For example, D has 2 congruent bases and all the other faces have 4 sides.

Identifying Faces of Prisms and Pyramids

Goal

Compare and sort 3-D shapes.

1. Name each shape. Use the names in the box.

based prism

based prism

square-
based pyramid

hexagon-
\qquad

triangle-
based pyramid
2. a) What do shapes B and H have in common?
b) What do shapes C and G have in common?

At-Home Help

A pyramid is a 3-D shape with
1 flat base. The other faces are triangles that meet at a vertex.

square-based pyramid
Review the definition of prism in the At-Home Help on page 84.

triangle-based prism

 square-based prism hexagon-based prism triangle-based pyramid square-based pyramid hexagon-based pyramid cube rectangle-based prismtriangles for bases
both pyramids and several triangle faces
3. Write the letters of all the shapes that fit each description.
a) have at least 1 triangle face
B, C, G, H
b) base is square \qquad
c) all faces are triangles \qquad H
d) all faces are rectangles or squares \qquad A, E, F

Using Nets for Rectangle-Based Prisms

Goal Build rectangle-based prisms from nets.

You will need scissors, a ruler, and tape.

1. a) Trace this net.

Draw solid lines where there are solid lines.
Draw dashed lines where there are dashed lines.
b) Cut out the net along the solid lines.
c) Fold along the dashed lines.
d) Tape the edges.
e) Name the 3-D shape you built. \qquad

Building with 3-D Shapes

Goal Build a structure with 3-D shapes.

You will need boxes, cans, scissors, and tape.

1. a) Find 3-D shapes that you could use to build a structure.

b) Plan a structure that you can build with some of the 3-D shapes you found.
c) Build your structure. Use tape if necessary.
d) Sketch your structure on the right side of this page.
e) Describe your structure using math language.

Answers will vary.
\qquad
\qquad
\qquad
\qquad
f) Explain how you built your structure.

Answers will vary.
\qquad
\qquad
\qquad
\qquad

Estimating and Measuring Capacity

Goal Estimate and measure the amounts containers can hold.

You will need water, a measuring cup marked in millilitres and empty containers of different sizes.

1. Which unit would you use to measure the capacity of each container: litres or millilitres?
a) swimming pool litres
b) pop can
millilitres
c) watering can \qquad
d) spoon \qquad
2. Find a measuring cup marked in millilitres. How much does it hold? Answers will vary.
3. a) Find 5 different sizes of empty containers such as bowls, glasses, and pots. Record the containers in the chart below.
b) Compare each container to your measuring cup and estimate the capacity of the container. Record your estimate in the chart below.
c) Check your estimates. Pour water from the measuring cup into each container to fill it. Keep track of how many measuring cups you use. Record your measurement.

At-Home Help

Capacity is the amount a container will hold.

Capacity is measured in millilitres (mL) and litres (L). $1000 \mathrm{~mL}=1 \mathrm{~L}$

Container	My estimate	Measurement
cereal bowl	400 mL	500 mL
Answers will vary.		

Solve Problems About Combinations

Goal

Solve problems using a table to record combinations.

Show your work.

1. Julia has 3 different ice cream scoops: $200 \mathrm{~mL}, 100 \mathrm{~mL}$, and 50 mL .
a) What possible amounts of ice cream can be measured without refilling the scoops?

Combination	Measure
1 scoop 200 mL	200 mL
1 scoop 100 mL	100 mL
1 scoop 50 mL	50 mL
2 scoops $200 \mathrm{~mL}+100 \mathrm{~mL}$	300 mL
2 scoops $200 \mathrm{~mL}+50 \mathrm{~mL}$	250 mL
2 scoops $100 \mathrm{~mL}+50 \mathrm{~mL}$	150 mL
3 scoops $200 \mathrm{~mL}+100 \mathrm{~mL}+50 \mathrm{~mL}$	350 mL

b) What possible sizes of ice-cream cones can be made if there are 2 scoops in each cone? You can refill scoops.
Combination
2 scoops same $200 \mathrm{~mL}+200 \mathrm{~mL} \quad 400 \mathrm{~mL}$
2 scoops same $100 \mathrm{~mL}+100 \mathrm{~mL} \quad 200 \mathrm{~mL}$
2 scoops same $50 \mathrm{~mL}+50 \mathrm{~mL} \quad 100 \mathrm{~mL}$
2 scoops different $200 \mathrm{~mL}+100 \mathrm{~mL} \quad 300 \mathrm{~mL}$
2 scoops different $200 \mathrm{~mL}+50 \mathrm{~mL} \quad 250 \mathrm{~mL}$
2 scoops different $100 \mathrm{~mL}+50 \mathrm{~mL} \quad 150 \mathrm{~mL}$

At-Home Help

To find the different measures that can be made using a 5 mL , a 15 mL , and a 25 mL spoon without refilling any of the spoons, it is helpful to make a table.

Combination	Measure
spoon alone 5 mL	5 mL
spoon alone 15 mL	15 mL
spoon alone 25 mL	25 mL
2 spoons $5 \mathrm{~mL}+15 \mathrm{~mL}$	20 mL
2 spoons $5 \mathrm{~mL}+25 \mathrm{~mL}$	30 mL
2 spoons $15 \mathrm{~mL}+25 \mathrm{~mL}$	40 mL
3 spoons $5 \mathrm{~mL}+15 \mathrm{~mL}+$ 25 mL	45 mL

Estimating and Measuring Mass

Goal Estimate and measure the masses of objects.

1. Which would you use to measure the mass of each item: grams or kilograms?
a) a watermelon \qquad
b) a toothbrush \qquad
c) a bag of popcorn \qquad
d) a wagon \qquad kilograms
2. Find several full containers that are measured in grams or kilograms. Dry items, such as bar soap, cereal, bread, rice, nuts, and other snack foods usually have mass units. (The mass of the packaging is not included in the mass given.)
3. a) Find 5 objects of different sizes without any masses given. You can use, for example, a shoe, a book, a toy, a plate, a cushion, or a can of pop. Record the items in the chart below.
b) Compare each object to the items you found in Question 2 and estimate the mass of the object.

At-Home Help

Mass is the amount of matter in an object. Mass can be measured in grams (g) or kilograms (kg). $1000 \mathrm{~g}=1 \mathrm{~kg}$
 Record your estimates in the chart below.

Item	My mass estimate
Dad's shoe	500 g
Answers will vary.	

4. Take 1 or 2 of the objects from Question 3 to school tomorrow. Measure their masses to check your estimates.

Test Yourself

Circle the correct answer.

1. Which prism could be made with this base?

A. rectangle-based prism
C. square-based prism
B. pentagon-based prism
D. triangle-based prism
2. Which statement is not true about prisms?
E. Prisms are named from the shape of their bases.
F. The bases are always congruent.
G. The faces that are not bases are all different.
H. Prisms can be made by stacking the same shape.
3. What is true about all pyramids?
A. They have some triangle faces.
C. They have exactly 1 vertex.
B. They have more than 5 faces.
D. They have 1 square base.
4. Which net would build this shape?

E.

F.

G.

5. Which capacity best describes a small juice box?
A. 200 L
B. 200 mL
C. 2 L
D. 2 mL
6. There are 3 sizes of pails: $1 \mathrm{~L}, 2 \mathrm{~L}$, and 5 L . Which is not a possible amount that can be carried in 2 pails of different sizes?
E. 8 L
F. 7 L
G. 6 L
H. 3 L
7. Which mass is the most reasonable for a textbook?
A. 20 kg
B. 30 g
C. 2 kg
D. 200 g
