Coordinate Grids

Goal Identify and describe locations on a grid.

1. Which community has each set of coordinates?
a) B 2 \qquad
b) E 4 \qquad
NUNAVUT TERRITORIES

2. This walking trail has rest spots marked $®$. Identify their coordinates.

At-Home Help

Coordinate B2 describes the location of the star. It is the space at which column B and row 2 meet.

A5, C6, D5, E4, D2
3. Each player takes turns placing a counter on the grid. The first player to place 5 counters in a straight line wins.
a) Name the coordinates for each C4, D3, E3
b) Name the coordinates for each \oplus.

$$
A 3, B 5, E 5
$$

c) Mark \bigcirc at D4 and \oplus at A4. Mark \bigcirc at A5 and \oplus at B2.
d) What is the player using trying to do? The player is trying to prevent the other player from getting 5 in a row in column A or in row 5.

Translating Shapes

Goal Use and describe translations.

1. Which sets of shapes are not translations?

A

B

C
A. A and B
C. C and A
B. B and C
D. A, B, and C
2. Draw the triangle for each translation.

Label each triangle using the letter of its step.
Step a Start at A4.
Step b Translate 3 right and 2 down.
Step c Translate 2 left and 4 up.
Step d Translate 5 down and 3 right.
3. a) Which rectangle will be closest to B2 when translated 2 down and 1 left?
\qquad
b) Where will rectangle \mathbf{b} end up if it is translated 4 down and 3 left? Name the coordinates.
\qquad
Al and B1

4. Describe translations of rectangle a to C1 and D1.

Do not move it to grid squares with other rectangles.
1 left, 4 down, 2 right

Rotating Shapes

Goal Use and describe rotations.

1. Which sets of shapes are not rotations?

A

B

C
A. A and B
C. C and A
B. B and C
D. A, B, and C
2. a) Describe the rotations of triangle A to triangle B. Rotate $90^{\circ} \mathrm{CCW}$ about the point where the triangles meet.
b) Can the same rotation apply from triangle A to triangle D? Explain. No, it has the same amount of turn, but in the opposite direction, so it is rotated $90^{\circ} \mathrm{CW}$ about the point where the triangles meet.

At-Home Help

A rotation of this triangle is 180° CCW (counterclockwise). The triangle turns around the centre of rotation without changing its size or shape.

Point R is the centre of rotation.
c) Describe 2 rotations of triangle X to triangle Y . Rotate $180^{\circ} \mathrm{CCW}$ about the point where the triangles meet on rotate $180^{\circ} \mathrm{CW}$ about the point where the triangles meet.
3. a) Rotate parallelogram $\mathrm{M} 90^{\circ} \mathrm{CCW}$.
b) Rotate parallelogram $\mathrm{N} 180^{\circ} \mathrm{CW}$.
c) Which rotation, a) or b), looks like a translation? rotation b)
d) Describe the translation. \qquad
2 right, 2 down
4. a) Rotate the triangle $90^{\circ} \mathrm{CCW} 3$ times.
b) What shape is created? \qquad a square

Reflecting Shapes

Goal Use and describe reflections.

1. Which sets of shapes are not reflections?

A

B

C
A. A and B
C. C and A
B. B and C
D. A, B, and C
2. Draw 3 reflections to show the whole tile design.
3. How are translations, rotations, and reflections the same? For all of these, the shapes and sizes don't change when transformed.
\qquad
4. You can reflect a triangle several times to make a hexagon. The reflections are started here.
Triangle A is reflected in a line through its right side to triangle B. Continue the reflections on the grid. Label each triangle with a different letter.
Describe each reflection. Triangle B is reflected in its

A reflection of a shape is flipped to the opposite side of the line of reflection, staying the the line of reflection, staying the
same distance from the line, not changing size or shape.

At-Home Help

right side to triangle C. Triangle C is reflected in its bottom side to triangle D.
Triangle D is reflected in its left side to triangle E. Triangle E is reflected in its left side to triangle F.

Communicate About Transformations

Goal Describe translations, rotations, and reflections.

1. Which description is most accurate?

Start

Step 1

Step 2

Step 3

At-Home Help

Communication Checklist
\square Are your steps in order?
\square Did you show enough detail?
\checkmark Did you include a diagram?
\checkmark Did you use math language?
A. translate, reflect, rotate
B. translate right, reflect, rotate CCW
C. translate 1 space right, reflect in line M , rotate about point $\mathrm{P} 180^{\circ} \mathrm{CCW}$
D. translate 1 space right, reflect in line M , rotate about point $\mathrm{P} 90^{\circ} \mathrm{CW}$
2. Karina described this transformation as "reflect in line M, rotate 180°, translate right."

Start

Step 1

Step 2

Step 3
a) Describe the strengths of Karina's description.

The steps are in order, and she used math language.
\qquad
b) Describe the parts of her description that need improvement.

There is not enough detail about the rotation on the translation.
c) Rewrite her description using your suggestions for improvement.

Reflect in line M, rotate $180^{\circ} \mathrm{CW}$ or CCW about point P, translate 2 spaces right.

Transformation Patterns

Goal Make patterns using transformations.

1.

a) What shapes are in this pattern?
\qquad
b) Describe the pattern in 2 different ways.

Answers will vary. For example, start with a
hexagon and a triangle to the right and at
top beside it; translate the hexagon to the
right 1 space (the size of a hexagon); reflect
the triangle in a horizontal line through its bottom vertex, and reflect both
triangles in a vertical line through the centre of the hexagon to the right,
repeat. Or start with a hexagon and 2 triangles to its right at top and bottom,
rotate the hexagon $180^{\circ} \mathrm{CW}$ or CCW about its right vertex, translate both
triangles to the right 2 spaces (the size of a triangle), repeat.
2. Create your own pattern on the grid below using these shapes.

For example:

Extending Transformation Patterns

Goal Extend geometric patterns.

1. a) Extend this pattern to complete the grid.

b) Describe the pattern using
line through it right most point (or side), repeat.
\qquad
\qquad
2. a) Extend this pattern to complete the grid.

b) Describe the pattern using transformations. Answers will vary. For example, rotate the triangle $90^{\circ} \mathrm{CW}$ about its right point (and lower point if there are

2 right points), reflect that triangle in a vertical line through it right most point (or side), repeat.
3. a) Extend this pattern to complete the grid.

b) Describe the pattern using transformations. Answers will vary. For example, translate the triangle 1 space right, translate that triangle 1 space right, reflect that triangle in a vertical line through it right most point (or side), repeat.

Test Yourself

Circle the correct answer.

1. Which coordinates are marked on the BINGO card?
A. B8, I16, G40, O53
B. B8, I10, G43, O58
C. $\mathrm{B} 8, \mathrm{I} 18, \mathrm{G} 48, \mathrm{O} 51$
D. B8, I18, G40, O53

\mathbf{B}	\mathbf{I}	\mathbf{N}	\mathbf{c}	\mathbf{G}
8	13	23	48	58
2	18	29	42	54
5	16	FREE	43	51
1	10	22	40	50
4	14	21	47	53

2. Where is the shape when it is translated 3 left and 2 down?
E. A1
F. A2
G. B2
H. B1

3. What are the angle and direction of the rotation shown?
A. $90^{\circ} \mathrm{CCW}$
B. $90^{\circ} \mathrm{CW}$
C. $180^{\circ} \mathrm{CW}$
D. $180^{\circ} \mathrm{CCW}$

4. Which shape is a reflection of shape A ?
E. shape B
G. shape D
F. shape C
H. shape E

5. Which is the next shape in this pattern?

B.
C.

D.

