Predict <i>m</i> .	Evaluate 3 <i>m</i>	Is this the correct solution?
200	3(200) = 600	too high
150	3(150) = 450	too high
111	3(111) = 333	correct

		۰.
1	r	۱
	6	,

Predict <i>r</i> .	Evaluate 5 <i>r</i> – 10.	Is this the correct solution?
15	5(15) - 10 = 65	too low
21	5(21) - 10 = 95	correct
25	5(25) - 10 = 115	too high

2. a) x = 64 b) q = 116 c) w = 17 d) c = 12f) k = 27 g) s = 51 h) u = 31**e**) *e* = 7

3. a) 4x + 100 = 140, x = 10

b) 7x = 294, x = 42

- c) 4x 52 = 212, x = 66
- **4.** a) She multiplied (24 + 12) by the variable. The equation asked for multiplying the variable by 12 only, and then adding 24.

L		۱
K)	I

Predict z.	Evaluate 24 + 12 <i>z</i> .	Is this the correct solution?
10	24 + 12(10) = 144	too low
15	24 + 12(15) = 204	too high
13	24 + 12(13) = 180	correct

5. a) A = 6 units squared

c) b = 8 units

8.6 Communicating the Solution for an Equation

- 1. On the left side there are three containers, so you get 3c. On the right side there are 15 marbles. The equation is 3c = 15. Divide both sides of the equation by 3, to determine that c = 5. The answer means that each container holds five marbles.
- **2.** a) 5c = 10, c = 2**b)** c + 3 = 7, c = 4c) 4c + 5 = 13, c = 2
- **3.** On the left side, there are two containers and three marbles. You can write this as 2m + 3. On the right side there are five marbles. The equation is 2m + 3 = 5. Subtract 3 from both sides to get 2m = 2. Divide both sides by 2 to get m = 1.
- 4. Tynessa should have subtracted 6 from both sides before dividing both sides by 2. The correct solution is c = 3.

Test Yourself

1. a) Start with one square and one triangle. Add one triangle each time. An alternative rule is: Each figure has one square and the same number of triangles as the term number.

4 . a) 9	b) 14	c) 2	d) 10
5. a) 15 + <i>h</i>	b) \$40	c) \$115	
6. a) <i>x</i> = 12	b) <i>p</i> = 9	c) <i>m</i> = 2	d) <i>b</i> = 6
7. a) 4 + t		b) 4 + <i>t</i> =	= 16
c) <i>t</i> = 12		d) 4 + (12	2) = 16
•			

8.	

Predict <i>k</i> .	Evaluate 4 + 2 <i>k</i> .	Is this the correct solution?
50	4 + 2(50) = 104	too low
52	4 + 2(52) = 108	too high
51	4 + 2(51) = 106	correct

9. a) 3*c* = 9

b) *c* = 3

c) There are three containers on the left side and nine marbles on the right, so the equation is 3c = 9. Divide both sides by 3 to get c = 3.

b) *x* = 3 **10.** a) *x* = 5 c) x = 4 d) x = 4

Chapter 9

9.1 Adding Fractions with Pattern Blocks

- **1.** To show $\frac{1}{4}$ of each diagram, shade one section of the square, one section of the circle, and two sections of the rectangle.
- For example, you could draw a rectangle divided in five equal pieces, and shade two.
- **3.** a) To show $\frac{1}{6}$, shade one section.

b) Repeat part (a).

c) $\frac{2}{6} = \frac{1}{3}$

- **4.** a) To show $\frac{1}{2}$, shade four sections.
 - **b**) To show $\frac{1}{8}$, shade one section. Now five sections in total are shaded.
 - **c**) $\frac{5}{8}$

9.2 Adding Fractions with Models

1. Chang forgot to convert the fraction $\frac{2}{3}$ into the equivalent fraction $\frac{4}{6}$. He should have coloured four rectangles on the first strip and one rectangle on the second strip to get a total of $\frac{5}{6}$.

2. a)
$$\frac{2}{4}$$
, or $\frac{1}{2}$ **b**) $\frac{3}{3}$, or 1c) $\frac{6}{6}$, or 1d) $\frac{13}{15}$ e) $\frac{7}{8}$ f) $\frac{7}{10}$

3. Draw a second arrow that is 5 units long to show $\frac{5}{20}$. Add the two arrows to get $\frac{9}{20}$.

4. a)
$$\frac{7}{10}$$
 b) $\frac{7}{8}$ c) $\frac{8}{8}$, or 1
d) $\frac{11}{24}$ e) $\frac{26}{40}$, or $\frac{13}{20}$ f) $\frac{17}{30}$
5. $\frac{3}{8}$
6. $\frac{3}{4}$ h

9.3 Multiplying a Whole Number by a Fraction

1. a) 8 squares b)
$$\frac{8}{3}$$
 c) $2\frac{2}{3}$
2. a) $\frac{3}{4}$ b) $\frac{6}{5}$, or $1\frac{1}{5}$ c) $\frac{5}{2}$, or $2\frac{1}{2}$
d) $\frac{7}{3}$, or $2\frac{1}{3}$ e) $\frac{20}{6}$, or $3\frac{1}{3}$
f) $\frac{20}{7}$, or $2\frac{6}{7}$
3. a) 8 b) 2, 3 c) 3, 2 d) 3, 4, 2

9.4 Subtracting Fractions with Models

1. Draw a second arrow to represent $\frac{1}{4}$, or $\frac{3}{12}$. The end of the arrow should start at the tip of the first arrow, and it should point left. The tip of the second arrow will end at the solution: $\frac{5}{12}$.

2. a) $\frac{1}{4}$ b) $\frac{1}{10}$ c) $\frac{5}{21}$ d) $\frac{7}{30}$

e)
$$\frac{17}{15}$$
, or $1\frac{2}{15}$ **f**) $\frac{53}{28}$, or $1\frac{25}{28}$
3. $\frac{4}{15}$

9.5 Subtracting Fractions with Grids

- **b)** Seven squares out of twenty have counters on them.
- 2. Jody forgot to rearrange the counters to express thirds before removing the counters in one column. Rearranging the counters leaves one full column with 2 counters left over. Removing one column leaves 2 squares out of 21 with counters. The solution is $\frac{2}{21}$.

3. a)
$$\frac{11}{12}$$
 b) $\frac{34}{15}$, or $2\frac{4}{15}$ c) $\frac{3}{8}$
d) $\frac{5}{9}$ e) $\frac{4}{12}$, or $\frac{1}{3}$ f) $\frac{5}{8}$
g) $\frac{2}{35}$ h) $\frac{59}{40}$, or $1\frac{19}{40}$
4. a) $\frac{17}{35}$ of the brownies
b) $\frac{18}{35}$ of the brownies
5. $\frac{17}{24}$ of the CDs

9.6 Adding and Subtracting Mixed Numbers

1. a) 4 b) 8
$$\frac{1}{4}$$
 c) 7 $\frac{5}{6}$ d) 8 $\frac{7}{8}$
e) 16 $\frac{1}{12}$ f) 5 $\frac{19}{30}$ g) 13 $\frac{5}{18}$ h) 8 $\frac{13}{21}$
2. a) 2 $\frac{3}{4}$ b) 1 $\frac{4}{5}$ c) 3 $\frac{4}{7}$ d) $\frac{3}{8}$
e) 1 $\frac{1}{2}$ f) 1 $\frac{5}{9}$ g) 6 $\frac{1}{7}$ h) $\frac{1}{12}$
3. 1 $\frac{1}{6}$ + 3 $\frac{1}{10}$ = 4 $\frac{4}{15}$
4. a) 5 $\frac{1}{4}$ h b) 4 $\frac{1}{30}$ h c) 8 $\frac{1}{8}$ h
5. 2 $\frac{5}{6}$ h, or 2 h 50 min
6. a) 7 $\frac{1}{2}$ years old
c) 1 $\frac{2}{5}$ years old
7. 1 $\frac{1}{12}$ pizzas
8. 3 $\frac{5}{9}$ h
9. 1 $\frac{3}{40}$

9.7 Communicating about Estimation Strategies

- **1. a)** Ryan forgot to include the fraction $\frac{9}{12}$ in his estimation. $4 \frac{9}{12}$ is closer to 5 than to 4.
 - **b**) You can round off 4 $\frac{9}{12}$ to the number 5. Then subtract from 6. Ryan has a little more than one case of pop left over.
- **2.** $2\frac{3}{4}$ is a little bit less than **3.** $1\frac{1}{8}$ is a little bit more than 1. Add 3 and 1 to get about 4 c. of sugar in total.
- **3.** Round off $\frac{1}{3}$ to $\frac{1}{2}$, which is easier to deal with. So the north wall needs a little less than $2\frac{1}{2}$ pieces. The west wall needs $\frac{1}{2}$ a piece. For the south wall, round off $1\frac{4}{5}$ to get a little less than 2. The east wall needs 3 pieces. Add $2\frac{1}{2}$ $+\frac{1}{2}+2+3=8$. Miguel needs a little less than 8 pieces of panelling

9.8 Adding and Subtracting Using Equivalent **Fractions**

- **1. a)** The common denominator is 8. The equivalent fractions are $\frac{5}{8}$ and $\frac{6}{8}$.
 - **b)** The common denominator is 10. The equivalent fractions are $\frac{5}{10}$ and $\frac{4}{10}$.
 - c) The common denominator is 12. The equivalent fractions are $\frac{11}{12}$ and $\frac{3}{12}$.
 - d) The common denominator is 35. The equivalent fractions are $\frac{20}{35}$ and $\frac{28}{35}$.
- 2. a) The missing values are 2 and 1. b) The missing values are 6, 10, 16, and 1.

3. a)
$$\frac{11}{14}$$
 b) $\frac{5}{8}$ c) $\frac{14}{9}$, or $1\frac{5}{9}$
d) $\frac{31}{42}$ e) $\frac{13}{8}$, or $1\frac{5}{8}$ f) $\frac{37}{40}$
g) $\frac{9}{20}$ h) $\frac{5}{24}$
4. a) $\frac{1}{6}$ b) $\frac{7}{20}$ c) $\frac{5}{10}$ or $\frac{1}{2}$
d) $\frac{1}{72}$ e) $\frac{5}{14}$ f) $\frac{5}{12}$ g) $\frac{2}{35}$
h) $\frac{27}{60}$, or $\frac{9}{20}$
5. $1\frac{7}{12}$ h
6. $2\frac{1}{3}$ days

7. Indira drank $\frac{1}{15}$ of a bottle more lemonade than Simon.

- **8.** 1 $\frac{1}{7}$ h
- **9**. Jody has finished $\frac{8}{35}$ more of her homework than Sandra.

10. a) $\frac{3}{10}$ **b)** Colin won $\frac{2}{5}$ more than Kaitlyn.

Test Yourself

1. a) C	b) A	c) B	
2. a) 3	b) <u>3</u>	c) $\frac{2}{5}$	
d) 1 1 /2, or	<u>3</u>	e) 3 $\frac{2}{5}$, or $\frac{17}{5}$	
f) 4 1 /5, or	<u>21</u> 5		
3. a) $\frac{7}{6}$, or 1	$\frac{1}{6}$	b) <u>1</u>	
4. a) $\frac{1}{9}$	b) $\frac{17}{24}$	-	
5. a) 1	b) <u>1</u>	c) $\frac{1}{10}$ d) $\frac{7}{24}$	
e) 7	f) $\frac{3}{14}$	g) $\frac{43}{40}$, or 1 $\frac{3}{40}$	
h) <u>11</u> 15			
6. a) 3 1	b) 2 <u>1</u> 0		
7. 1			
8. a) 4 <u>5</u>	b) 11 11	c) 9 <u>31</u> 56	
9. a) 1 3	b) 1 5 6	c) 4 <u>1</u>	
10. a) 3	b) <u>1</u>	c) <u>1</u>	
11. $\frac{2}{3}$ of her pay			
12. a) 75 $\frac{7}{10}$ y	vears old	b) 79	
c) 72 3 /10 years old			
13. a) 1 full be	ох	b)	
14 . $\frac{7}{12}$			
15. a) $\frac{7}{8}$ of a tube is a little less than 1 tube. $3\frac{1}{6}$ tubes is a little more than 3 tubes. Added			
		ed about 4 tubes of	

b) She has about 5 tubes of paint left in total. **16.** $\frac{7}{10}$ of the day

paint.