1

 Ontario Numeracy Assessment Package

 Ontario Numeracy Assessment Package}

MEASUREMENT

The Measurement strand of the Ontario Curriculum for Grade 7 identifies seven Mathematical Process Expectations: problem solving, reasoning and proving, reflecting, selecting tools and computational strategies, connecting, representing, and communicating. Using these process expectations, students study, learn, and apply concepts and skills organized under the big ideas/headings of Attributes, Units, and Measurement Sense; and Measurement Relationships.

The following chart highlights key knowledge and skill development as students move from Grade 7 to 8 .

GRADE 7	GRADE 8
- research and report on real-life applications of area measurement - solve problems that require conversion between metric units of measure (e.g., millimetres and centimetres, grams and kilograms, millilitres and litres, square centimetres and square metres) - estimate and calculate the area of composite two-dimensional shapes by decomposing into shapes with known area relationships - determine the relationship for calculating the area of a trapezoid and generalize to develop a formula - solve problems involving the estimation and calculation of the area of a trapezoid - determine the surface area of right prisms - determine the relationship between the height, the area of the base, and the volume of right prisms with simple polygonal bases, and generalize to develop the formula - sketch different polygonal prisms that share the same volume - solve problems that involve the surface area and volume of right prisms and that require conversion between metric measures of capacity and volume	- research, describe, and report on real-life applications of volume and capacity measurement - solve problems that require conversions involving metric units of area, volume, and capacity (e.g., millimetres and centimetres, grams and kilograms, square centimetres and square metres) - measure the circumference, radius, and diameter of circular objects, using concrete materials - determine the relationships for calculating the circumference and the area of a circle, and generalize to develop the formula - solve problems involving the estimation and calculation of the circumference and the area of a circle - determine the surface area of a cylinder - determine the relationship between the area of the base and height and the volume of a cylinder, and generalize to develop the formula - solve problems that involve the surface area and the volume of cylinders

For each strand of the curriculum, ONAP provides three types of assessment materials. Consider the following points when administering the assessments for the strand.

Part A: Activating Prior Knowledge (page 99)

- The activities in Part A have been created to activate students' knowledge before they complete the Part B assessment or the Part C performance tasks.
- No score is assigned during this part of the assessment.
- It is recommended that you spend one or two periods working on and discussing the activities provided in this part.

Part B: Concepts and Skills Assessment (page 107)

- The assessment in Part B addresses each of the specific expectations within the two overall expectations in the Measurement strand.
- Students will be responding to a mix of questions: short response, fill-in-the-blank, and multiple choice.
- Most students will be able to complete the entire assessment in a 60 -minute period. Individual students may be allowed additional time to complete the assessment if needed as long as they complete the assessment in one sitting.

Part C: Performance-Based Assessment Tasks (page 125)

- The two performance tasks in Part C are designed to provide insights into how well students are able to perform in terms of the categories of the Ontario Achievement Chart: Knowledge and Understanding, Thinking, Communication and Application.
- All of the overall expectations for this strand have been assessed through the Concept and Skills Assessment in Part B.
- It is recommended that you select one performance task for the Measurement strand.
- Each task is designed to be completed in a 45 - to 60 -minute period. If necessary, provide additional time as long as students complete the task in one sitting.

Part A: Activating Prior Knowledge

Administration

To activate students' knowledge of the Measurement strand, choose one or both of the following activities to work on prior to administering the assessments. Introductory and culminating suggestions are provided for each. No score is assigned for these activities.

Timing

It is recommended that you spend one or two periods working on and discussing the activities provided in this part.

Accommodating Students with Special Needs

Observe students as they complete the activities. While the activities in this section are not designed as a formal diagnostic assessment, you may want to consider whether students who are having extreme difficulties with the activities are ready to participate in the full ONAP assessment for this grade level. Observations at this stage might also indicate students who will need special accommodations during the assessment, such as having someone read questions to them or scribe responses.

Activity 1: The Climbing Conversion

Materials

- BLM A1: Activity 1: The Climbing Conversion—Game Cards (one per student pair)
- BLM A2: Activity 1: The Climbing Conversion-Game Board (one per student)
- scissors

Introducing the Activity

In preparation for playing this game, review conversions using metres and kilometres, and metres and millimetres. Ask students:

- How many metres are in 1 km ? (1000)
- How many kilometres are in 1 m ? (0.001)
- How many millimetres are in 1 m ? (1000)
- How many metres are in 1 mm ? (0.001)

As well, review conversions between the area units of square metres and square centimetres. Ask students:

- How many centimetres are in 1 m ? (100)
- How many square centimetres are in $1 \mathrm{~m}^{2}$? $(100 \times 100$, or 10000$)$
- How many metres are in 1 cm ? (0.01)
- How many square metres are in $1 \mathrm{~cm}^{2}$? $(0.01 \times 0.01$, or 0.0001$)$

Record the following area conversions on the board for students' reference:
$1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2} \quad 1 \mathrm{~cm}^{2}=0.0001 \mathrm{~m}^{2}$
Distribute BLM A1: Activity 1: The Climbing Conversion—Game Cards and BLM A2:
Activity 1: The Climbing Conversion-Game Board to students to use for this activity.

Procedure

Number of players: two
Goal: to fill the spaces on the game board with game cards so that the calculated numerical answers on the cards are placed in order from greatest to least

How to play:

- Step 1—Players cut out the cards and lay them out face up.
- Step 2-Players take turns choosing a card, completing the conversion, and placing the card on their game board. They will try to place the cards so that the numerical values that they calculate are placed in order from greatest to least. Players may use a turn to change the position of a card on their game board, but they must wait for their next turn to choose a new card.
- Step 3-Play continues until one player has covered all the spaces on his or her game board.
Students may play subsequent games using the remaining cards.

Variation:

Students choose five cards that will give them the greatest or least total. Before starting to play, the two students must decide whether they are aiming for the greatest or least total. They must use the conversion number that they calculate, but do not need to include the unit of measure.

Culminating Discussion

1. What strategies helped as you played the game?

When I filled in the top of the board, I started with cards that had the larger unit on the left side because I knew that the number for the equivalent smaller unit would be large. When I filled in the bottom of the board, I looked for cards with the smaller unit on the left side. I also noticed that cards that converted square metres to square centimetres had big numbers in the blank.
2. Which conversions were the most difficult?

I had to think more about converting area units than I did about converting units for length. Sometimes it was a little hard to convert the units if there was a decimal in one of the numbers.
3. Did the game become more challenging as you played a second time with fewer cards?
Yes, because I picked the easiest numbers to convert in the first game.

Answers

Activity cards:

$$
\begin{array}{ll}
120 \mathrm{~mm}=\underline{12.0} \mathrm{~cm} & 0.5000 \mathrm{~m}^{2}=\underline{5000} \mathrm{~cm}^{2} \\
3500 \mathrm{~L}=\underline{.500} \mathrm{~kL} & 4000 \mathrm{~mL}=\underline{4.000} \mathrm{~L} \\
5250 \mathrm{~g}=\underline{5.250} \mathrm{~kg} & 7 \mathrm{~km}=\underline{7000} \mathrm{~m} \\
30000 \mathrm{~cm}^{2}=\underline{3.000} \mathrm{~m}^{2} & 8000 \mathrm{~m}=\underline{8.000} \mathrm{~km} \\
74500 \mathrm{~m}=\underline{74.500} \mathrm{~km} & 4.0000 \mathrm{~m}^{2}=\underline{40} 000 \mathrm{~cm}^{2} \\
324.0 \mathrm{~cm}=\underline{\underline{3240} \mathrm{~mm}} & 20000 \mathrm{~cm}^{2}=\underline{2.0000} \mathrm{~m}^{2} \\
14.0 \mathrm{~m}^{2}=\underline{\underline{40000}} \mathrm{~cm}^{2} & 5.60 \mathrm{~L}=\underline{5600 \mathrm{~mL}} \\
19.0 \mathrm{~g}=\underline{1900} \mathrm{cg} & 89.0 \mathrm{~m}=\underline{8900} \mathrm{~cm}
\end{array}
$$

```
70 000 g = 70.000 kg 
2500 \mp@subsup{cm}{}{2}=\underline{0.250 m}\mp@subsup{m}{}{2}\quad80000\mp@subsup{\textrm{cm}}{}{2}=\underline{8.0000 m}\mp@subsup{m}{}{2}
```


Activity 2: Capacity-Least to Greatest

Materials

- BLM A3: Activity 2: Capacity—Least to Greatest (one per student)
- a metric measuring cup (for the teacher)
- $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ cube (for the teacher)

Introducing the Activity

Review the relationship between the base area and volume of prisms. As well, review the formula for calculating the area of the trapezoid, $A=(a+b) \div 2 \times h$, where a and b are the parallel sides and h is the height.

Demonstrate the relationship between volume and capacity. Fill a $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ (or $1000 \mathrm{~cm}^{3}$) cube with 1000 mL of accurately measured water to demonstrate that the volume of the cube is $1000 \mathrm{~cm}^{3}$ and its capacity is 1000 mL or 1 L .
Distribute BLM A3: Activity 2: Capacity-Least to Greatest and have students examine the information given for the three vases. Have them predict the order from least to greatest capacity. Then have them calculate the capacity of each container and order them. Students may work individually or in pairs.

Culminating Discussion

1. How did your prediction compare to your calculated answer?

I predicted that the order from least to greatest capacity would be A, C, B, but the calculated order was A, B, C. I shouldn't have thought that just because vase B was tallest it would have the greatest capacity.
2. Explain how you calculated the capacity of vase C.

I imagined three separate prisms. Two were trapezoid-based prisms and one was a square-based prism, which was in the middle.
To get the volume of each, I multiplied the area of the base by the height of the prism. Then I added the volumes together. Finally, I converted the total volume to capacity.

Answers

Least to greatest capacity: A, B, C

Vase A

Area of base: $10 \times 6=60 \mathrm{~cm}^{2}$
Height: 15 cm
Volume: $60 \mathrm{~cm}^{2} \times 15 \mathrm{~cm}=900 \mathrm{~cm}^{3}$
Capacity: 900 mL or 0.9 L

Vase B

Area of base: $[(8+6) \div 2] \times 5=35 \mathrm{~cm}^{2}$
Height $=30 \mathrm{~cm}$
Volume: $35 \mathrm{~cm}^{2} \times 30 \mathrm{~cm}=1050 \mathrm{~cm}^{3}$
Capacity: 1050 mL or 1.050 L

Vase C

Base consists of 2 trapezoids and 1 square.
Area of base: $(3+7) \div 2 \times 4+(3 \times 3)+(3+7) \div 2 \times 4=49 \mathrm{~cm}^{2}$
Height: 25 cm
Volume: $49 \mathrm{~cm}^{2} \times 25 \mathrm{~cm}=1225 \mathrm{~cm}^{3}$
Capacity: 1225 mL or 1.225 L
OR
Each trapezoid prism:
Area of trapezoid: $[(7+3) \div 2] \times 4=20 \mathrm{~cm}^{2}$
Height: 25 cm
Volume: $20 \mathrm{~cm}^{2} \times 25 \mathrm{~cm}=500 \mathrm{~cm}^{3}$
Rectangular prism in the middle:
Area of square base: $3 \times 3=9 \mathrm{~cm}^{2}$
Height: 25 cm
Volume: $9 \mathrm{~cm}^{2} \times 25 \mathrm{~cm}=225 \mathrm{~cm}^{3}$
Total volume: $500 \mathrm{~cm}^{3}+500 \mathrm{~cm}^{3}+225 \mathrm{~cm}^{3}=1225 \mathrm{~cm}^{3}$
Capacity: 1225 mL or 1.225 L

Activity 1: The Climbing Conversion-Game Cards

$120 \mathrm{~mm}=\ldots \quad \mathrm{cm}$	$0.5000 \mathrm{~m}^{2}=\quad \ldots \mathrm{cm}^{2}$
$3500 \mathrm{~L}=\ldots$	$4000 \mathrm{~mL}=\ldots$
$5250 \mathrm{~g}=\ldots \ldots \mathrm{kg}$	$7 \mathrm{~km}=\ldots \mathrm{m}$
$30000 \mathrm{~cm}^{2}=\ldots \ldots \mathrm{m}^{2}$	$8000 \mathrm{~m}=\ldots \quad \mathrm{km}$
$74500 \mathrm{~m}=\ldots \ldots \mathrm{km}$	$4.0000 \mathrm{~m}^{2}=\quad \mathrm{cm}^{2}$
$324.0 \mathrm{~cm}=\ldots \ldots \mathrm{mm}$	$20000 \mathrm{~cm}^{2}=\ldots \ldots \mathrm{m}^{2}$
$14.0 \mathrm{~m}^{2}=\ldots \mathrm{cm}^{2}$	$5.60 \mathrm{~L}=\ldots \mathrm{mL}$
$19.0 \mathrm{~g}=\ldots$	$89.0 \mathrm{~m}=\ldots \mathrm{cm}$
$70000 \mathrm{~g}=\ldots \ldots \mathrm{kg}$	$35000 \mathrm{~g}=\ldots \ldots \mathrm{kg}$
$2500 \mathrm{~cm}^{2}=\ldots \quad \mathrm{m}^{2}$	$80000 \mathrm{~cm}^{2}=\ldots \mathrm{m}^{2}$

Name: \qquad Date: \qquad

Activity 1: The Climbing Conversion-Game Board

How to play:

Step 1 Cut out the game cards and lay them out face up.
Step 2 Take turns choosing a card, completing the conversion, and placing the card on the game board. Try to place the cards so that the numerical values that you calculate are in order from greatest to least. You may use a turn to change the position of a card on the game board, but then you must wait for your next turn to choose a card.

Step 3 Play continues until one player has covered all spaces on his or her game board.

Name: \qquad Date: \qquad

Activity 2: Capacity-Least to Greatest (page 1)

Predict the order of the three vases from least to greatest capacity.
\qquad
\qquad
\qquad
Calculate the capacity of each vase, and then list them in order from least to greatest capacity: \qquad
\qquad
\qquad Vase A
capacity: \qquad mL

Vase B
capacity: \qquad mL

Name: Date: \qquad

Activity 2: Capacity-Least to Greatest (page 2)

Part B: Concepts and Skills Assessment

Administration

This assessment addresses each of the specific expectations within the two overall expectations in the Measurement strand. Part B includes several styles of questions: short response, fill-in-the-blank, and multiple choice.

Timing

Most students will be able to complete the entire assessment in a 60 -minute period. If necessary, provide students with additional time to complete the assessment as long as they complete it in one sitting.

Materials

FOR THE TEACHER	FOR EACH STUDENT	OPTIONAL MATERIALS
- Individual Student Scoring Guide: pp. 119-121 - Class Tracking Sheet: pp. 122-123 - ONAP 8 CD-ROM (optional)	- Assessment Part B: pp. 109-117 - pencil - eraser - ruler	- centimetre cubes - centimetre grid paper

Introducing the Assessment

Inform students that they will be completing an assessment to help you get to know what they have learned about math in earlier grades. Tell students that it is important that they answer the questions as fully as possible. To communicate effectively, they can use pictures, numbers, words, and/or diagrams to represent their thinking.

Encourage students to use other material, such as centimetre cubes or centimetre grid paper, that they think might help them to answer the questions.

Note: Calculators are not recommended during this assessment.

Accommodating Students with Special Needs

If individuals or groups of students have difficulties with reading, consider reading the questions aloud as they complete the assessment.

If individual students have difficulties explaining their thinking in writing, consider providing scribes to record for the students, or encourage students to show and explain their thinking using concrete materials.

Some students will require additional time to complete the assessment. You may wish to note this accommodation in your anecdotal notes about the students. However, there should be no reduction of the student's overall score in terms of the amount of time it takes the student to complete the assessment.

Scoring the Assessment

A detailed Individual Student Scoring Guide is provided on pages 119 to 121 . The guide is designed to be completed for each student. The individual scores can then be used to fill in the Class Tracking Sheet on pages 122 to 123 . Alternatively, you may record student results directly on the Class Tracking Sheet. The results may also be recorded electronically using the ONAP 8 CD-ROM.

While great care has been taken to consider the range of possible answers for each question, there will be times when you will need to apply your professional judgment to score an individual answer. You may use the Curriculum Correlation chart provided on page 124 to help you to determine whether the student has demonstrated the intended concept knowledge or skill based on the overall and specific expectations being assessed by the particular question.

At times, a student may provide an answer that you think does not completely represent his or her knowledge and skill level. You may ask probing questions to better assess the student's overall understanding.

Some questions are delivered in more than one part (a and b) and are given more than one point. Should a student's answer in one part reveal that a correct answer in the other part was arrived at for the wrong reason, a score of zero should be given for both parts.

Name: Date: \qquad

Measurement

1. Three flower beds were created in a rectangular area 10 m by 8 m , as shown below. Small stones were spread between the flower beds.

Scale: 1 cm represents 1 m
a) What is the total area of the flower beds? \qquad
Show your work.

Name: \qquad Date: \qquad
b) What is the total area covered by the small stones? \qquad
Show your work.
2. The Caramel Candy Company is designing a new container for its caramel candy. The container must have a volume of $300 \mathrm{~cm}^{3}$.
a) Sketch and label the dimensions of two possible containers that are rectangular prisms.
b) Sketch and label the dimensions of a triangular base for a triangular prism container that also has a volume of $300 \mathrm{~cm}^{3}$. What is the height of the container?

Name: \qquad Date: \qquad
3. a) How many 160 cm lengths of ribbon can be cut from a ribbon that is 8 m long?

A 500
B 20
C 50
D 5
b) A craft store sells model paint in 250 mL bottles. A litre of the model paint costs $\$ 44.84$. What is the cost for one 250 ml bottle?

A $\$ 17.93$
B $\$ 4.48$
C $\quad \$ 11.21$
D $\quad \$ 112.10$
4. Andy is putting a new countertop in his kitchen.
a) A countertop is $1 \mathrm{~m} \times 1 \mathrm{~m}$. What is the area of the countertop in square centimetres $\left(\mathrm{cm}^{2}\right)$?
b) What is the ratio of the number of square metres $\left(\mathrm{m}^{2}\right)$ to the number of square centimetres $\left(\mathrm{cm}^{2}\right)$ for a given area?
\qquad
c) Use the ratio from part b) to determine the number of square centimetres $\left(\mathrm{cm}^{2}\right)$ in a countertop that is $5.75 \mathrm{~m}^{2}$.

Name: \qquad Date: \qquad
5. Viraf wants a formula for the area of a trapezoid. He knows the area of a parallelogram. So he made two copies of the trapezoid into a parallelogram.

a) What is the formula for the area of the parallelogram? Use the variables in the diagram.
b) What is the formula for the area of each trapezoid? Use the variables in the diagram.
c) How are the formulas in 5 a) and 5 b) related?

Name: \qquad Date: \qquad
6. Angelo's class is participating in a math olympics. Each team is designing a team logo. This is Angelo's team logo.

a) What is the area of the whole grid? square units How can you estimate the area of the trapezoid?

Explain your thinking.

The area of the trapezoid is about \qquad square units.
b) Calculate the area of the trapezoid. Was your estimate reasonable?

Show your work.

Name: \qquad Date: \qquad
7. a) Look at the polygons. Draw lines to show how each could be broken up into parallelograms, triangles, or trapezoids so that you can use formulas to calculate the area of the whole polygon.

b) Calculate the area of each polygon below.

\qquad square units

\qquad square units

Show your work.

Name: \qquad Date: \qquad
8. Examine the prisms.

a) Complete the chart for each shape.

	Dimensions (cm)		
Prism	Area of base (cm²)	Height (cm)	Volume (cm$)$
A			
B			
C			

b) What relationship did you use to determine the volume?

Name: \qquad Date: \qquad
9. a) Calculate the volume and the surface area of cubes in the table below.

Length (cm)	Width (cm)	Height (cm)	Volume (cm³)	Surface area (cm ${ }^{\mathbf{2}}$)
1	1	1		
2	2	2		
3	3	3		
4	4			

b) If the pattern in the table continues, will the volume and surface area of a cube ever be the same numerical value?

Explain your thinking.

Name: \qquad Date: \qquad
10. The Dolphin Swim Club is building a new lap pool for training. The pool is 2 m deep, 25 m long, and 10 m wide.
a) What is the volume of the pool? \qquad
b) The pool is filled so that the water is 1.5 m deep. How many litres of water are in the pool?

Show your work.

L of water are in the pool.
c) What is the total surface area of the sides and bottom of the pool? \qquad
Show your work.

The total surface area is \qquad m^{2}.

ONAP INDIVIDUAL STUDENT SCORING GUIDE
 GRADE 8: MEASUREMENT-PART B

Name: __ Date:		
Overall Expectation 7m31 (Attributes, Units, and Measurement Sense): Report on research into real-life applications of area measurements.		
$\begin{aligned} & 7 \mathrm{~m} 33 \\ & \text { 1. a) } \end{aligned}$	1 point for calculating with one error OR 2 points for the correct process and calculations; e.g., Area of shape 1 : Area of shape 2: $\begin{aligned} & 2 \times 3 \div 2=3 \mathrm{~m}^{2} \\ & 2 \times 4=8 \mathrm{~m}^{2} \end{aligned}$ Area of shape 3: $(7+3) \times 3 \div 2=15 \mathrm{~m}^{2}$ Total area of the gardens: $3 m^{2}+8 m^{2}+15 m^{2}=26 m^{2}$	
$\begin{aligned} & 7 \mathrm{~m} 33 \\ & \text { 1. b) } \end{aligned}$	1 point for calculating with one error OR 2 points for calculating correctly; e.g., Rectangle: $\quad 10 \mathrm{~m}^{2} \times 8 \mathrm{~m}^{2}=80 \mathrm{~m}^{2}$ Flower beds: $26 \mathrm{~m}^{2}$ Stone: $\quad 80 m^{2}-26 m^{2}=54 m^{2}$ NOTE: Give points for correct process and calculations even if answer to a) is incorrect.	
	Total for Overall Expectation 7m31	4
Overall Expectation 7m32 (Measurement Relationships): Determine the relationships among units and measurable attributes, including the area of a trapezoid and the volume of a right prism.		
$\begin{aligned} & 7 \mathrm{~m} 34 \\ & \text { 2. a) } \end{aligned}$	1 point for two correctly labelled sketches of containers NOTE: Possible dimensions include but are not limited to $3 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$; or $6 \mathrm{~cm} \times 5 \mathrm{~cm} \times 10 \mathrm{~cm}$; or $15 \mathrm{~cm} \times 2 \mathrm{~cm} \times 10 \mathrm{~cm}$	
$\begin{aligned} & 7 \mathrm{~m} 34 \\ & \text { 2. b) } \end{aligned}$	1 point for a correctly labelled sketch of a triangle and a recorded prism height; e.g., a sketch of a triangle with height labelled 6 cm and base labelled 10 cm , and prism height is 10 cm or a sketch of a triangle with height labelled 10 cm and base labelled 10 cm , and prism height is 6 cm . NOTE: It is the base and height of the triangular base that are required; these are not sides unless the triangle sketched is a right triangle.	
$\begin{aligned} & 7 \mathrm{~m} 35 \\ & \text { 3. a) } \end{aligned}$	$\text { D } 5$ 1 point	
$\begin{aligned} & 7 \mathrm{~m} 35 \\ & \text { 3. b) } \end{aligned}$	$\begin{aligned} & \text { C } \$ 11.21 \\ & 1 \text { point } \end{aligned}$	

$\begin{aligned} & 7 \mathrm{~m} 36 \\ & \text { 4. a) } \end{aligned}$	$\begin{aligned} & 100 \times 100=10000 \mathrm{~cm}^{2} \\ & 1 \text { point } \end{aligned}$	
$\begin{aligned} & 7 \mathrm{~m} 36 \\ & \text { 4. b) } \end{aligned}$	1:10000; or 1 m to 10000 cm 1 point	
7m36 4. c)	$\begin{aligned} & 5.75 \times 10000=57500 \mathrm{~cm}^{2} \\ & 1 \text { point } \end{aligned}$	
$\begin{aligned} & 7 \mathrm{~m} 37 \\ & 5 . \mathrm{a}) \end{aligned}$	$\begin{aligned} & A=(a+b) \times h ; \text { or } A=(a \times h)+(b \times h) \\ & 1 \text { point } \end{aligned}$	
$\begin{aligned} & 7 \mathrm{~m} 37 \\ & 5 . \mathrm{b}) \end{aligned}$	$\begin{aligned} & A=(a+b) \div 2 \times h ; \text { or } A=(a+b) \times h \div 2 ; \text { or } A=\frac{(a \times h)}{2}+\frac{(b \times h)}{2} \\ & 1 \text { point } \end{aligned}$	
$\begin{aligned} & 7 \mathrm{~m} 37 \\ & 5 . \mathrm{c}) \end{aligned}$	1 point for a brief explanation; e.g., The area of each congruent trapezoid is $\frac{1}{2}$ the area of the parallelogram. AND 1 point for a complete explanation of why they are related; e.g., I can make a parallelogram from two trapezoids, but one needs to be upside down. I know the formula for the area of a rectangle and I know that the area of one of the trapezoids will be half. It is still base \times height, but I need to divide by 2. The base is the sum of the two lengths, or the top and bottom of the trapezoid.	
$\begin{aligned} & 7 \mathrm{~m} 38 \\ & 6 . \mathrm{a} \end{aligned}$	1 point for a reasonable explanation; e.g., The area of the grid is 30 square units. The area of the trapezoid is about $\frac{1}{2}$ of the grid so it's about 15 square units.	
$\begin{aligned} & 7 \mathrm{~m} 38 \\ & 6 . \mathrm{b}) \end{aligned}$	14 square units 1 point for the correct area and relating it to estimate; e.g., Sample calculation: Trapezoid: $(2+5) \div 2 \times 4=14$ square units My calculation is close to my estimate.	
$\begin{aligned} & 7 \mathrm{~m} 39 \\ & 7 . \mathrm{a}) \end{aligned}$	Sample answers: 1 point for one correct answer OR 2 points for two correct answers	

$\begin{aligned} & \text { 7m39 } \\ & \text { 7. b) } \end{aligned}$	48 square units; 42 square units 1 point for one correct answer OR 2 points for two correct answers with explanations; e.g., The polygon on the left is made up of 2 triangles and a square. The square has an area of $6 \times 4=24$ square units and each triangle has an area of $\frac{1}{2} \times 6 \times 4=12$ square units. $24+12+12=48$ square units The polygon on the right is made up of a triangle with area $\frac{1}{2} \times 6 \times 4=12$ square units and a trapezoid with area $(12+8) \times 3 \div 2=30$ square units. $12+30=42$ square units	
$\begin{array}{\|l} \hline 7 \mathrm{~m} 40 \\ \text { 8. a) } \end{array}$	A: $8,8,64 ; \quad$ B: $16,8,128$ or $32,4,128 ; \quad$ C: $16,8,128$ 1 point for 6 to 8 correct answers OR 2 points for all 9 answers correct	
$\begin{aligned} & \hline \text { 7m40 } \\ & \text { 8. b) } \end{aligned}$	area of base times height 1 point	
$\begin{array}{\|l} \hline \text { 7m41 } \\ \text { 9. a) } \end{array}$	Volume: 1, 8, 27, 64 Surface area: 6, 24, 54, 96 1 point for 6 or 7 answers correct OR 2 points for all 8 answers correct	
$\begin{aligned} & \hline \text { 7m41 } \\ & \text { 9. b) } \end{aligned}$	1 point for identifying that the numbers will be the same, accompanied by a reasonable explanation; e.g., Yes, a $6 \mathrm{~cm} \times 6 \mathrm{~cm} \times 6 \mathrm{~cm}$ cube will have a volume of $216 \mathrm{~cm}^{3}$ and a surface area of $216 \mathrm{~cm}^{2}$. This makes sense because there are six surfaces, so the surface area will be $6 \times 6 \mathrm{~cm} \times 6 \mathrm{~cm}$.	
$\begin{array}{\|l} \hline 7 \mathrm{~m} 42 \\ \text { 10. a) } \end{array}$	$\begin{aligned} & 2 \mathrm{~m} \times 25 \mathrm{~m} \times 10 \mathrm{~m}=500 \mathrm{~m}^{3} \\ & 1 \text { point } \end{aligned}$	
$\begin{array}{\|l} \mathbf{7 m 4 2} \\ \text { 10. b) } \end{array}$	$\begin{aligned} 150 \mathrm{~cm} \times 2500 \mathrm{~cm} \times 1000 \mathrm{~cm} & =375000000 \mathrm{~cm}^{3} \\ & =375000000 \mathrm{~mL} \\ & =375000 \mathrm{~L} \end{aligned}$ 1 point for correctly calculating the volume AND 1 point for correctly converting to litres	
$\begin{array}{\|l} \hline 7 \mathrm{~m} 42 \\ 10 . \mathrm{c}) \end{array}$	$\begin{aligned} & 2(2 \times 10)+2(2 \times 25)+(10 \times 25) \\ & =40+100+250 \\ & =390 \mathrm{~m}^{2} \\ & \mathbf{1} \text { point } \end{aligned}$	
	Total for Overall Expectation 7m32	27

ONAP GRADE 8: MEASUREMENT

ұuəuranseaw

CLASS TRACKING SHEET - PART B

Board: \qquad Teacher Name: \qquad

7m32 (Measurement Relationships)
Determine the relationships among units and measurable attributes, including the area of a trapezoid and the volume of a right prism.

7 m 36			7 m 37			7m38		7m39		7m40		7m41		7 m 42			끈
4. a)	4. b)	4. c)	5. a)	5. b)	5. c)	6. a)	6. b)	7. a)	7. b)	8. a)	8. b)	9. a)	9. b)	10. a)	10. b)	10. c)	
					2	1		2	2	2				1	2	1	27

ONTARIO CURRICULUM CORRELATION TO ONAP MEASUREMENT 8 - PART B

NOTE: This correlation is to the Grade 7 Ontario Curriculum Expectations.

Specific Expectation

7m33: research and report on real-life applications of area measurements (e.g., building a skateboard; painting a room)

Overall Expectation 7m32 (Measurement Relationships):
Determine the relationships among units and measurable attributes, including the area of a trapezoid and the volume of a right prism.

| Question
 Number | Specific Expectation |
| :---: | :--- |$|$| 2. a)-b) | 7m34: sketch different polygonal prisms that share the same volume |
| :--- | :--- | :--- |
| 3. a)-b) | 7m35: solve problems that require conversion between metric units of measure (e.g., millimetres and
 centimetres, grams and kilograms, millilitres and litres) |
| 4. a)-c) | 7m36: solve problems that require conversion between metric units of area (i.e., square centimetres,
 square metres) |
| 5. a)-c) | 7m37: determine, through investigation using a variety of tools (e.g., concrete materials, dynamic
 geometry software) and strategies, the relationship for calculating the area of a trapezoid, and
 generalize to develop the formula [i.e., Area $=$ (sum of lengths of parallel sides \times height) \div 2] |
| 6. a)-b) | 7m38: solve problems involving the estimation and calculation of the area of a trapezoid |
| 7. a)-b) | 7m39: estimate and calculate the area of composite two-dimensional shapes by decomposing into
 shapes with known area relationships (e.g., rectangle, parallelogram, triangle) |
| 8. a)-b) | 7m40: determine, through investigation using a variety of tools and strategies (e.g., decomposing
 right prisms; stacking congruent layers of concrete materials to form a right prism), the relationship
 between the height, the area of the base, and the volume of right prisms with simple polygonal
 bases (e.g., parallelograms, trapezoids), and generalize to develop the formula
 (i.e., Volume = area of base \times height) |
| 9. a)-b) | 7m41: determine, through investigation using a variety of tools (e.g., nets, concrete materials, dynamic
 geometry software, Polydrons), the surface area of right prisms |
| 10. a)-c) | 7m42: solve problems that involve the surface area and volume of right prisms and that require
 conversion between metric measures of capacity and volume (i.e., millilitres and cubic centimetres) |

Part C: Performance-Based Assessment

Administration

The two performance tasks in Part C are designed to provide insight into how well students are able to perform in terms of the categories of the Ontario Achievement Chart: Knowledge and Understanding, Thinking, Communication, and Application.

Since all of the specific and overall expectations for this strand have been assessed through the Concepts and Skills Assessment in Part B, it is recommended that you select one performance task for the Measurement strand.

Read all parts of the problem orally to students. Tell students that they should provide detailed answers to the problem, including showing how they solved the problem. Remind students that they may use pictures, numbers, words, diagrams, and/or charts to explain effectively how they solved the problem.

Timing

Each task is designed to be completed in a 45- to 60-minute period. If necessary, provide additional time as long as students complete the task in one sitting.

Accommodating Students with Special Needs

If individual students have difficulties explaining their thinking in writing, consider providing scribes to record for the students or encourage students to show and explain their thinking using concrete materials.

Scoring the Assessment

A generic rubric based on the Ontario Achievement Chart for Mathematics is provided on page 135 to assist with scoring student responses to the tasks. Spend some time reviewing the anchors and rationales provided for each level of achievement on pages 136 to 151 . The four categories should be considered as interrelated, reflecting the wholeness and interconnectedness of learning. Each student's performance should therefore be determined holistically by selecting the level that best describes the student's overall achievement.

Sometimes a student will not achieve at the same level for each criterion within a category or across categories. For example, a student may perform at Level 3 on Knowledge and Understanding, Thinking, and Application but at Level 2 on Communication. While you may determine that, overall, the student performed most consistently at Level 3, you may want to make a note that this student would benefit from additional instruction in the area of Communication.

Note: When scoring student work on the performance tasks, it is appropriate to note what you observed and heard while the student worked on the task.

Once you have completed scoring the students' assessments, you may record the results electronically using the ONAP 8 CD-ROM, or using the Performance Class Tracking Sheet provided on page 134.

Next Steps

Strategies for improving performance in the four areas of the Achievement Chart are provided in the ONAP introduction, pages 18 and 19.

Performance Task 1: Activity Fair-What's My Sign?

Materials

FOR THE TEACHER	FOR EACH STUDENT	OPTIONAL MATERIALS
- BLM C1: Performance Task 1: Activity FairSample Sign Design: p. 129 - Performance Task Class Tracking Sheet: p. 134 - Performance Task Rubric: p. 135 - Anchors and rationales: pp. 136-151 - ONAP 8 CD-ROM (optional)	- BLM C1: Performance- Task 1: Activity Fair- What's My Sign? pp. 130-131 - pencil - eraser - ruler - pencil crayons	- centimetre grid paper

Introducing the Task

For this task, students apply their measurement skills to design a promotional sign. This sign must be between $1.5 \mathrm{~m}^{2}$ and $2.5 \mathrm{~m}^{2}$ and must include at least two of the following polygons: parallelograms, triangles, or trapezoids.

Tell students that they will

- design a sign based on both geometrical design and measurement guidelines
- explain their design strategy

Display the design from BLM C1: Performance Task 1: Activity Fair-Sample Sign Design on the overhead. Point out the scale you are using and record it:
1 grid length represents 10 cm
Then work through the area calculation with the class.

Area of 2 triangles: $\frac{2 \times(140 \mathrm{~cm} \times 70 \mathrm{~cm})}{2}=9800 \mathrm{~cm}^{2}$
Area of trapezoid: $(140 \mathrm{~cm}+280 \mathrm{~cm}) \times 70 \mathrm{~cm} \div 2=14700 \mathrm{~cm}^{2}$
Total area: $\quad 9800 \mathrm{~cm}^{2}+14700 \mathrm{~cm}^{2}=24500 \mathrm{~cm}^{2}$, or $2.45 \mathrm{~m}^{2}$
Have students use BLM C2: Performance Task 1: Activity Fair—What's My Sign? to complete this activity. Explain that their signs should be very different from the sample.

Performance Task 2: Design Glass Boxes

Materials

FOR THE TEACHER	FOR EACH STUDENT	OPTIONAL MATERIALS
- Performance Task Class Tracking Sheet: p. 134 - Performance Task Rubric: p. 135 - Anchors and rationales: pp. 136-151 - ONAP 8 CD-ROM (optional)	- BLM C2: Performance Task 2: Design Glass Boxes pp. 132-133 - pencil - eraser - protractor	- centimetre grid paper

Introducing the Task

In this activity, students will be designing three boxes, each being a rectangular prism with a volume of $1000 \mathrm{~cm}^{3}$. The boxes must all have different dimensions. Students will identify the design with the least surface area. Then they will determine the height of a box with a specific hexagonal base and a specific volume. Finally, they will design a pentagonal prism box with a volume within a specific range.

Tell students that they will

- sketch different rectangular prisms that have the same volume
- determine the surface area of each rectangular prism, and identify the box with the least surface area
- determine the height for a hexagonal prism with a given base and volume
- design a triangular prism with a volume within a given range and explain their design strategy

Have students use BLM C2: Performance Task 2: Design Glass Boxes to complete this activity.

Answers

1. a) Possible solutions:

Box	Length	Width	Height	Volume (cm ${ }^{\mathbf{3}}$)	Surface area (cm²)
1	20	5	10	1000	700
2	25	4	10	1000	780
3	10	10	10	1000	600

b) The $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ cube should be made of red glass.
2. Area of the base:

$$
\begin{aligned}
\text { Area } & =(10 \mathrm{~cm}+6 \mathrm{~cm}) \times 4 \mathrm{~cm} \\
& =64 \mathrm{~cm}^{2}
\end{aligned}
$$

Volume: $770 \mathrm{~cm}^{3}$
Height: $770 \mathrm{~cm}^{3} \div 64 \mathrm{~cm}^{2}=12.03125$ or about 12 cm NOTE: Accept an estimate of 11 or 12 cm .
3. Strategy: The hexagonal prism in question 2 , with a height of 12 cm and the given base, has a volume close to $770 \mathrm{~cm}^{3}$, which is between $600 \mathrm{~cm}^{3}$ and $800 \mathrm{~cm}^{3}$.
So, I can use similar dimensions for a triangular base, sketch it, and
 calculate its area.
Area of base:
Triangle: $(16 \mathrm{~cm} \times 9 \mathrm{~cm}) \div 2=72 \mathrm{~cm}^{2}$
With this base area, a height of 10 cm would give a volume of $720 \mathrm{~cm}^{3}$, which is between $600 \mathrm{~cm}^{3}$ and $800 \mathrm{~cm}^{3}$.

Performance Task 1: Activity Fair-Sample Sign Design

Provided for teachers to create overhead transparency.

Performance Task 1: Activity Fair-What's My Sign? (page 1)

Glenview School is hosting an Activity Fair for all the clubs in the school to recruit new members. Each club will make an interestingly shaped sign for its display area. The committee has provided these guidelines:

- The signs must be about $2 \mathrm{~m}^{2}$ (no smaller than $1.5 \mathrm{~m}^{2}$ and no larger than $2.5 \mathrm{~m}^{2}$).
- The signs should have an interesting shape that can be decomposed into other polygons such as parallelograms, triangles, and trapezoids.
- The sign may not be a single rectangle, triangle, or trapezoid.

Design your own sign. Calculate the area of your sign and remember to include the scale for your drawing below.

Scale:

Name: Date:

Performance Task 1: Activity Fair-What's My Sign? (page 2)

Explain your design strategy.

Name: \qquad Date: \qquad

Performance Task 2: Design Glass Boxes (page 1)

Rebecca is taking stained-glass lessons. She wants to make three decorative glass boxes with lids. Each box will be a rectangular prism and have a volume of $1000 \mathrm{~cm}^{3}$, but will have different dimensions. For one of the boxes, she plans to use red glass, which is the most expensive. She wants this box to have the least surface area possible.

1. a) Design and draw three different boxes with lids and label which box should be made of red glass. Fill in the chart with the dimensions of each of your boxes.
\square

Box	Length	Width	Height	Volume (cm)	Surface area (cm²)
1					
2					
3					

b) Which box should be made of red glass? \qquad

Name: \qquad Date:

Performance Task 2: Design Glass Boxes (page 2)

2. Rebecca has enough blue glass left to make a box that is a hexagonal prism. The dimensions of the base are shown on the diagram below. Rebecca wants the box to have a volume of close to $770 \mathrm{~cm}^{3}$. How tall should she make it?

Show your work.
3. Design a box that is a triangular prism with a volume of between $600 \mathrm{~cm}^{3}$ and $800 \mathrm{~cm}^{3}$. Explain your design strategy.
\square

ONAP PERFORMANCE TASK CLASS TRACKING SHEET GRADE 8: MEASUREMENT PART C

Date:
School: \qquad Board:
Grade: \qquad

Teacher Name: \qquad
Performance Task Title: \qquad

Student Name		Level 1-4	

Performance Task Rubric
Assessment of Learning - What to Look For in Student Work

CATEGORY	LEVEL 1	LEVEL 2	LEVEL 3	LEVEL 4
Knowledge and Understanding	- demonstrates a limited or inaccurate understanding of the concepts needed to solve the problem - demonstrates a limited or inaccurate knowledge of the specific concepts, terms, or procedural skills that have been taught	- demonstrates some understanding of the concepts needed to solve the problem - demonstrates some knowledge of the specific concepts, terms, or procedural skills that have been taught	- demonstrates considerable understanding of the concepts needed to solve the problem - demonstrates considerable knowledge of the specific concepts, terms, or procedural skills that have been taught	- demonstrates a thorough understanding of the concepts needed to solve the problem - demonstrates a thorough knowledge of the specific concepts, terms, or procedural skills that have been taught
Thinking	- demonstrates a limited understanding of the problem - shows little or no evidence of a plan - uses a strategy and attempts to solve the problem but does not arrive at an answer	- demonstrates some understanding of the problem - shows some evidence of a plan - carries out the plan to some extent by using a strategy and develops a partial and/or incorrect solution	- demonstrates considerable understanding of the problem - shows evidence of an appropriate plan - carries out the plan effectively by using an appropriate strategy and solving the problem	- demonstrates a thorough understanding of the problem - shows evidence of a thorough plan - shows flexibility and insight when carrying out the plan by trying and adapting when necessary one or more strategies to solve the problem
Communication	- provides a limited or inaccurate explanation/ justification that lacks clarity or logical thought - communicates with limited effectiveness (may include words, pictures, symbols, and/or numbers)	- provides a partial explanation/justification that shows some clarity and logical thought - communicates with some effectiveness (may include words, pictures, symbols, and/or numbers)	- provides a complete, clear, and logical explanation/ justification - communicates with considerable effectiveness (may include words, pictures, symbols, and/or numbers)	- provides a thorough, clear, and insightful explanation/justification - communicates with a high degree of effectiveness (may include words, pictures, symbols, and/or numbers)
Application	- demonstrates a limited ability to apply mathematical knowledge and skills	- demonstrates some ability to apply mathematical knowledge and skills	- demonstrates considerable ability to apply mathematical knowledge and skills	- demonstrates a sophisticated ability to apply mathematical knowledge and skills

Performance Task 1: Activity Fair-What's My Sign? LEVEL 1 (Anchor 1)

Thinking

- demonstrates a limited understanding of the problem
- displays some understanding of the problem by using one shape
repeated in a unique pattern
Knowledge and Understanding
- demonstrates a limited understanding of estimating and calculating
the area of composite two-dimensional shapes and using a scale, and
the relationship between metric units for area
the relationship between metric units for area

[^0]

LEVEL 1 (Anchor 2)

Thinking

- expresses some understanding of the problem and carries out a plan to
arrive at a partial solution by designing a sign composed of more than one shape
- uses an incorrect plan to determine area calculations by applying a scale that is a ratio of square units rather than linear units Application
- reveals limited and faulty understanding of scale and no evidence of an ability to convert metric units

Performance Task 1: Activity Fair-What's My Sign? LEVEL 2 (Anchor 1)

Thinking

- demonstrates an understanding of the problem and carries out a plan
to arrive at a partial solution by designing a sign composed of the
required shapes; recognizes the need to employ a scale but is unable to
identify one
Application
- displays some ability to apply mathematical knowledge related to the
area of composite shapes but does not show evidence of using a scale
or converting area measurements

[^1]Performance Task 1: Activity Fair-What's My
Sign? (page 1)
Glenview School is hosting an Activity Fair for all of the clubb in the
school o oecuit new members. Exhc club will make an interstingly
shaped sign for tis display area. The committee has provided these

- The signs must be about $2 \mathrm{~m}^{2}$ (no smaller than $1.5 \mathrm{~m}^{2}$ and no larger

- The sign may not be a single rectangle, triangle, or trapezoid.
Design your own sign. Calculate the area of your sign and remember to
include the scale for your drawing below.

Performance Task 1: Activity Fair-What's My Sign? LEVEL 2 (Anchor 2)
- demonstrates some understanding of estimating and calculating the
area of composite two-dimensional shapes by decomposing into
shapes with known area relationships
- shows good understanding of using scale in area calculations, but makes inaccurate conversions between area units

Communication

- communicates with some effectiveness through the use of clear and labelled diagrams
- articulates a limited explanation of design strategy; the shapes are

NEL

Performance Task 1: Activity Fair-What's My Sign? LEVEL 3 (Anchor 1)

- exhibits considerable understanding of the problem by drawing a sign select a scale that will meet the area requirements
- transcribes the areas of the decomposed shapes inaccurately, which leads to an incorrect combined area; the total area is actually $2.68 \mathrm{~m}^{2}$, which is beyond the design parameters
- does not take advantage of the symmetry of the bottom part of the shape to simplify calculations
- expresses considerable ability to apply mathematical knowledge of both area unit conversions and area relationships

Performance Task 1: Activity Fair-What's My Sign? (page 2)

Knowledge and Understanding

composite two-dimensional shapes by decomposing into shapes with known area relationships

- demonstrates considerable understanding of converting between
metric units of measure for area
- communicates with some effectiveness using a diagram linked by letters to corresponding calculations; minor transcribing error in the scale
- provides a clear and logical explanation for the design strategy but
inaccurately notates scale, and calculates one area as $200 \mathrm{~cm}^{2}$ instead of $400 \mathrm{~cm}^{2}$

Performance Task 1: Activity Fair-What's My Sign? LEVEL 3 (Anchor 2)

[^2]Performance Task 1: Activity Fair-What's My Sign? (page 1)

Glenview School is hosting an Activity Fair for all of the clubs in the
school to recruit new members. Each club will make an interstingly school to recruit new members.
shaped sign for its display area. The committec has provided these
guidelines:

Performance Task 1: Activity Fair-What's My Sign? LEVEL 4 (Anchor 1)

Thinking

- shows evidence of a thorough plan
- displays flexibility and insight when carrying out the plan, particularly
when determining scale
Application
- demonstrates a sophisticated ability to apply mathematical knowledge
of both area unit conversions and area relationships

[^3]

Performance Task 1: Activity Fair-What's My Sign? LEVEL 4 (Anchor 2)

- demonstrates an understanding of a problem that requires an	exhibits a thorough understanding of the problem and, in fact, understanding of relationships among linear and area units suggests a solution that is mathematically simple while still satisfying all of the criteria		
demonstrates ability to calculate the area of composite two- dimensional shapes by decomposing into shapes with known	Application		
Communication	demonstrates a sophisticated ability to apply mathematical knowledge of both area conversions and area relationships		
- provides a clear explanation including appropriate diagrams and a			
justification of the solution's simplicity; note that units were used on			
only one term; note that scale should be either $1: 100$ or $1 \mathrm{~cm}: 100 \mathrm{~cm}$,			not $1: 100 \mathrm{~cm}$
:---			

LEVEL 1 (Anchor 1)

Thinking
demonstrates limited understanding of the problem (in question 2,
does not use the required information provided)
Application

- displays some ability to solve problems related to the volume, but not the surface area, of rectangular prisms; displays limited ability with
formulas for hexagonal prisms and triangular prisms

Performance Task 2: Design Glass Boxes (page 2)
2. Rebecca has enough blue glass left to make a box that is a hexagonal
prism. The dimensions of the base are show on the

Show your work.
$(a \times b \div 2)$
70×20
100

3. Design a box that is a triangular prism with a volume of between
$600 \mathrm{~cm}^{3}$ and $800 \mathrm{~cm}^{3}$. Explain your design strategy.

$$
(a \times b \div 2) \text { Show your work. } 10 y \quad 70 \times 20=1400 \div 2=700 \mathrm{~cm}
$$

Show your work.	
$(a \times b \div 2)$	$10 y$

[^4]Performance Task 2: Design Glass Boxes (page 1) Rebecca is taking stained-glass lessons. She wants to make three
decorative glass boxes with lids. Each box will be a rectangular prism and decorative glass boxes with lids. Each box will be a rectangular prism and
dave a volume of $1000 \mathrm{~cm}^{3}$ but will have different dimensions. For one of
hes, the boxes, she plans to use red glass, which is the most expensive. She
wants this box to have the least surface area possible.

1. a) Design and draw three different boxes with lids and label which
box should be made of red glass. Fill in the chart with the
dimensions of each of your boxes.
dimensions of each of your boxes.

b) Which box should be made of red glass? 10 cm by loch by 10 ch

LEVEL 1 (Anchor 2)

Thinking
demonstrates limited understanding of the problem (fails to answer
question 1b) and selects inappropriate strategies in questions 2 and 3) Application

- displays s
- displays some ability to solve problems related to the volume and
surface area of rectangular prisms but displays limited ability with
triangular prisms and hexagonal prisms

[^5]
Performance Task 2: Design Glass Boxes LEVEL 2 (Anchor 1)

¢					

(Anchor 2)

Thinking

- reveals a good understanding of volume and surface area of rectangular prisms; includes one calculation error
- demonstrates limited and incomplete s
- demonstrates limited and incomplete strategies for determining
volume of non-rectangular right prisms
- displays some ability to apply mathematical knowledge of volume of prisms
- shows limited ability to apply formulas for calculating the area of a trapezoid or a triangle; question 2 is not fully answered

[^6]Performance Task 2: Design Glass Boxes (page 1) Rebecca is taking stained-glass lessons. She wants to make three

1. a) Design and draw three different boxes with lids and label which
box hhould bee amed o red gass. Fifl in the chart with the
dimensions of each of your boxes. dimensions of each of your boxes.

(Anchor 1)
 LEVEL

-

ゅ

Performance Task 2: Design Glass Boxes LEVEL 3 (Anchor 2)

Thinking

- reveals considerable understanding of the problem, selects correct
formulas, and uses efficient computational strategies to arrive at
correct solutions, with the exception of two surface area calculations
Application
- displays ability to apply mathematical knowledge and skills (with two
computational errors in question 1)
- uses understanding of the relationship between the volume of a
rectangular prism and a triangular prism with the same dimensions to
determine an answer in question 3

[^7]
NEL
Performance Task 2: Design Glass Boxes LEVEL 4 (Anchor 1)
Thinking
Thinking

- demonstrates a thorough understanding of the problem, selects correct formulas, and uses efficient computational strategies to arrive at an
accurate solution; accurately calculates the area of the base, and divides to determine the missing dimension - displays a sophisticated ability to apply knowledge of volume and

[^8]

Performance Task 2: Design Glass Boxes LEVEL 4 (Anchor 2)

Thinking

- exhibits a thorough understanding of the problem, selects correct
formulas, and uses appropriate computational strategies to arrive at an accurate solution
- applies the guess and check strategy in question 2 and logical reasoning in question 3

[^9]Application
-
provides a written explanation where appropriate

Next Steps for Measurement
 Instructional Next Steps for Overall Expectations

After summarizing individual and class performance on each the of overall expectations, you may find that there are areas that could be retaught to some students. The following suggestions have been provided to assist you in preparing tasks for individuals or small groups of students.

Overall Expectation 7m31 (Attributes, Units, and Measurement Sense) Report on research into real-life applications of area measurements.

Background

This overall expectation is about applying an understanding of area to real life. By the end of Grade 7, students will have had many experiences calculating the area of twodimensional shapes using a variety of strategies. For this expectation, students build on their foundational learning from earlier grades. By the end of Grade 7, students should

- understand that the area of an object is a two-dimensional attribute
- be familiar with standard units of area (square centimetre, square metre, and square kilometre)
- develop referents for each standard unit of area and be able to use units appropriately
- be able to calculate the area of composite shapes by applying area formulas for familiar shapes drawn inside or outside the shape in question
- recognize that the surface area of 3-D shapes may be calculated
- recognize that there are many real-life situations that require knowledge of area

Strategies

Revisiting Formula Development

A formula describes a shape in terms of relationships among its component measurement attributes. By Grade 8, students will have developed and be able to use formulas for determining the areas of rectangles, parallelograms, triangles, and trapezoids. Students who apply a formula to the wrong shape or who have difficulty remembering a formula may need to review the development of the formula. For example, provide a rectangle on a centimetre grid and have students relate the number of rows and columns to the formula for area. Then have them draw a diagonal of the rectangle and determine the area of one of the resulting triangles. Have them relate this area to the area of the rectangle and develop the formula for the area of a triangle. Continue with the development of the formulas for the area of a parallelogram and a trapezoid as necessary.

Composing

Give students opportunities to decompose and/or redraw shapes onto shapes that have areas that can be calculated using a formula. For example,

$A=$ area of square - area of 3 triangles
$=16-(3+1+0.5)=11.5$ square units

$$
\begin{aligned}
A & =\text { area of triangle }+ \text { area of rectangle }+ \text { area of trapezoid } \\
& =10+5+8 \\
& =23 \text { square units }
\end{aligned}
$$

Students need many experiences calculating the areas for composite shapes by decomposing them into shapes for which there are area formulas. In the first example above, the area of the rectangle that will enclose the shape is determined and then the "extra" areas are subtracted from the whole. This is not an easy relationship for some students to identify. In the second example, a shape is decomposed into three shapes for which there are known area formulas.

Have students practise determining area through decomposition and then share strategies so that everyone can see that there is more than one way to decompose a shape. Make mathematical connections between the strategies so that students will begin to understand area relationships and expand on the ways in which they can solve area problems independently.

Constructing

Help students make the connection between real life and area measurement by using contexts and references beyond formal mathematics instruction. For example, have students do one of the following:

- build a ramp for model cars/trains/hamsters, or design skateboard or snowboard ramps
- using centimetre grid paper, plan a number of interesting garden shapes for a new park or horticultural centre. Students can determine the area of each garden as well as the area of the paths between the gardens. Each garden could have a decorative stone border, and students could calculate the area of the stone border. Students should include a scale on their plans.

Overall Expectation 7m32 (Measurement Relationships)

Determine the relationships among units and measurable attributes, including the area of a trapezoid and the volume of a right prism.

Background

This overall expectation deals with relationships among units and measurable attributes. In Grade 7, students solve problems involving estimating and calculating the areas of familiar geometric shapes. They investigate and apply their understanding of relationships between metric units, areas of familiar shapes, base area and volume of right prisms, and surface area of right prisms. By the end of Grade 7, students should be able to

- solve problems that require conversion between metric units of measure
- develop the formula for the area of a trapezoid
- estimate and calculate the area of composite two-dimensional shapes by decomposing into shapes with known area relationships
- understand the relationship between the area of the base and the volume of right prisms
- sketch polygonal prisms
- determine surface area of right prisms

Having students use a hands-on approach means that the formulas are less likely to be forgotten, will be used in a flexible way, and are more likely to be expanded and adapted appropriately.

Strategies

Unit Relationships

Use base ten blocks to help students visualize area units. Have them examine a hundreds block and relate this to a 10 cm by 10 cm area, or $100 \mathrm{~cm}^{2}$. Have them outline a square metre using metre sticks and/or masking tape on the floor. Then have them place as many hundreds blocks as are available in that square, and imagine how many hundreds blocks it will take to completely cover the square. Relate this to a 100 cm by 100 cm area, which is the same as a 1 m by 1 m area, or $10000 \mathrm{~cm}^{2}$ or $1 \mathrm{~m}^{2}$.

Have students design two possible mural sizes for the school hall. Explain that the murals will be rectangles and must have a total area of between $1.5 \mathrm{~m}^{2}$ and $2.5 \mathrm{~m}^{2}$. Explain that the murals will be created using square centimetre tiles. Have students then calculate the number of tiles that will be required for each of the murals.

Developing Formulas

One development of the formula for a trapezoid depends on an understanding of the formula for a parallelogram.

$A=b h$
A triangle can be one half the area of a parallelogram with the same base and height.

$A=\frac{1}{2} b h$

A trapezoid can be one half of the area of a parallelogram.

$A=h\left(\frac{a+b}{2}\right)$
Students need time to manipulate these relationships concretely and make connections to the formula before they will understand both the similarities and differences between the two formulas. Students will then be able to reconstruct their learning if memorization fails.

Have students investigate formula relationships using Power Polygons. Ask them to select pairs of congruent triangles and trapezoids. Have students combine each pair to form a parallelogram and then trace the pairs on paper. Then ask students to measure the dimensions of the triangles and trapezoids as well as the parallelograms that they have created. Finally, have students explain how the measurements relate to the formulas for triangles, trapezoids, and parallelograms. If Power Polygons are not available, students may use polygons cut from cardstock.

Not Always Biggest

Have students draw nets for 3-D objects for which they are determining the surface area. Knowing that the surface area of a prism is simply the sum of the area of all of the faces is generally more helpful than memorizing a formula for a specific shape.

Provide students with three empty boxes (e.g., cereal boxes, cracker boxes, pencil boxes, etc.). Have them estimate the order for both volume and surface area. Then have students determine volume and surface area. Allow students to cut the boxes to create nets as they determine the surface area. Discuss any observations. Use the examples to link to the formula for surface area as simply a way of systematically organizing the areas of all the faces.

Building Prisms

Students who have difficulty determining the volume of right prisms that do not have a rectangular base may use cubes to help with their understanding. They can use the cubes to construct rectangular prisms, calculate the volume, and then use that information to generalize to other right prisms. Have students build a $5 \mathrm{~cm} \times 4 \mathrm{~cm}$ base with centimetre cubes. They can place this on grid paper to confirm the area of the base. This prism has a volume of $5 \times 4 \times 1$. As layers are stacked, the total number of cubes changes predictably; $5 \times 4 \times 2,5 \times 4 \times 3,5 \times 4 \times 4$, and so on. Understanding this relationship, where cubes can be counted to verify calculations, will help students to understand that the volume of any prism is always the area of the base times the height. Students could use pattern blocks to create bases that are triangles, hexagons, trapezoids etc., and then stack layers to confirm that the formula for the volume of prisms (base area \times height) applies to any base.

[^0]: Communication

 - communicates with limited effectiveness by using diagrams, equations, and written explanations, but mathematical misunderstandings result
 in justifications that lack clarity and logic

[^1]: - demonstrates understanding of estimating and calculating the area of composite two-dimensional shapes by decomposing into shapes with known area relationships; a scale is not specified
 - shows limited understanding of converting between metric units of
 measurement for area

 ## Communication

 diagrams and related calculations, and is able to articulate the point at which the solution strategy ends

[^2]: - demonstrates considerable ability to estimate and calculate the area of
 composite two-dimensional shapes by decomposing into shapes with known area relationships
 - displays considerable understanding of converting between metric
 units of measure for area

 ## Communication

 - communicates with considerable effectiveness using a clear diagram and well-referenced calculations; there is a slight error in the
 communication of the combination of partial areas (the answer is
 correct but not all partial areas are listed)
 - provides no explanation for design strategy

[^3]: Knowledge and Understanding

 - demonstrates a thorough understanding of a problem that requires
 conversion between metric units of measure for area
 - exhibits a high level of ability to estimate and calculate the area of
 composite two-dimensional shapes by decomposing into shapes with
 known area relationships
 - communicates with some effectiveness; includes an appropriate diagram but does not show calculations
 - provides a clear and insightful explanation of the design strategy,
 particularly with respect to the determination of scale; note that scale should read either $1 \mathrm{~cm}: 10 \mathrm{~cm}$ or $1: 10$

[^4]: - demonstrates some understanding of volume but no understanding of
 surface area of right prisms
 - exhibits limited understanding of calculating the volume of right
 prisms with simple polygonal bases

 ## Communication

 - provides limited explanations
 - provides some appropriate diagrams and others that are inaccurate (in
 question 3, correct height is not indicated and diagram is not drawn reasonably to scale)

[^5]: Knowledge and Understanding

 - shows limited understanding of calculating the volume of right prisms with simple polygonal bases that are not rectangles - provides calculations that are frequently inaccurate

 ## Communication

 - offers limited explanations
 - provides some appropriate diagrams and others that are inaccurate

[^6]: Knowledge and Understanding
 demonstrates some understanding of volume and surface area of right prisms

 - expresses limited understanding of calculating the volume of right prisms with simple polygonal bases
 - uses order of operations incorrectly in
 - provides some explanation through calculations and diagrams; does not provide strategy in question 3
 - includes extraneous details for some answers

[^7]: - demonstrates an understanding of the volume of right prisms with
 simple polygonal bases
 - shows some difficulty cal
 Communication
 communicates with some effectiveness; clearly identifies
 most calculations
 - provides written exp
 question 3 lacks clarity and description of final measurements

[^8]: Knowledge and Understanding

 - demonstrates a thorough understanding of the volume of right prisms with simple polygonal bases and the surface area of right prisms Communication - uses diagrams effectively, clearly identifies all calculations, and provides a written explanation where appropriate; in question 2, indicates why the standard formula for the area of a trapezoid is multiplied by 2 (there are two trapezoids)

[^9]: - displays a sophisticated ability to apply knowledge of volume and surface area to solve problems

